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Abstract

Despite the explosive growth of activity in the �eld of Earth System data assimilation

over the past decade or so� there remains a substantial gap between theory and practice�

The present article attempts to bridge this gap by exposing some of the central concepts

of estimation theory and connecting them with current and future data assimilation

approaches� Estimation theory provides a broad and natural mathematical foundation

for data assimilation science�

Stochastic�dynamic modeling and stochastic observation modeling are described

�rst� Optimality criteria for linear and nonlinear state estimation problems are then

explored� leading to conditional�mean estimation procedures such as the Kalman �lter

and some of its generalizations� and to conditional�mode estimation procedures such

as variational methods� A detailed derivation of the Kalman �lter is given to illustrate

the role of key probabilistic concepts and assumptions� Extensions of the Kalman �lter

to nonlinear observation operators and to non�Gaussian errors are then described� In

a simple illustrative example� rigorous treatment of representativeness error and model

error is highlighted in �nite�dimensional estimation procedures for continuum dynamics

and observations of the continuum state�

iii



An Introduction to Estimation Theory May ����� DAO O�ce Note �����

Contents

Abstract iii

� Introduction �

� Discrete stochastic	dynamic

and stochastic observation models 


��� Discrete stochastic�dynamic model � � � � � � � � � � � � � � � � � � � � � � � �
��� Discrete stochastic observation model � � � � � � � � � � � � � � � � � � � � � �

� Conditional mean and conditional mode estimation �

��� Introduction � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 	
��� Conditional mean estimation � � � � � � � � � � � � � � � � � � � � � � � � � � 

��� Conditional mode estimation � � � � � � � � � � � � � � � � � � � � � � � � � � ��


 The discrete Kalman 
lter ��

��� Introduction � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
��� The forecast step � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
��� The analysis step � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
��� Properties � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

��� Generalizations � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

� Nonlinear analysis updates ��

��� Introduction � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
��� Nonlinear observation operators � � � � � � � � � � � � � � � � � � � � � � � � � ��
��� Lognormal observation errors � � � � � � � � � � � � � � � � � � � � � � � � � � �	

� A simple illustrative example ��

��� Introduction � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
��� The continuum problem � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
��� A �nite
dimensional problem � � � � � � � � � � � � � � � � � � � � � � � � � � �	
��� Concluding remarks � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

Acknowledgements 
�

Appendix A Conditional Probability Densities and Expectations 
�

Appendix B The Lognormal Distribution 
�

Appendix C Filtering Theory on the Continuum 
�

References ��

iv



An Introduction to Estimation Theory May ����� DAO O�ce Note �����

� Introduction

The �eld of data assimilation for Earth System Science has witnessed an explosion of ac

tivity in recent years� Just a decade ago� data assimilation was regarded primarily as a
means of providing initial conditions for numerical weather prediction �NWP� models� In

creasingly it is being recognized that through the constant confrontation of theory �in the
form of more general Earth System models� with reality �as provided by Earth System
data� represented by the data assimilation process� major advances can be expected in our
scienti�c understanding of the dynamics� variability� and interactions of all components of
the Earth System over a broad range of time and space scales �Bengtsson and Shukla �
		�
NAS �

��� The desire to carry out data assimilation is being driven largely by the rapidly
increasing amount of observational data becoming available� much of it from space�borne
platforms� as well as by pressing scienti�c and societal needs to understand the behavior
of the Earth System as a whole� At the same time� the ability to pursue data assimila

tion in a physically and mathematically sound fashion is being enabled by the increasing
sophistication of Earth System models and by rapid advances in computing technology�

Despite this unprecedented level of activity� Earth System data assimilation remains a
young discipline� with far more open questions than solved ones� For instance� it is only
intuitive that by constantly confronting Earth System models with data throughout the as

similation process� one should be able to estimate model biases and to tune free parameters�
thereby o�ering a rigorous� data�driven means of improving our Earth System modeling
capabilities� Concerted e�orts along these lines have not yet begun� Even for the static
data assimilation methods already employed operationally in NWP �e�g�� Parrish and Der

ber �

�� there remain many open questions in covariance modeling� for example� revolving
around issues such as dynamical balance� state dependence� characterization of observation
errors� and identi�ability of covariance parameters� Recent progress toward more dynamic
data assimilation approaches �e�g�� Andersson et al� �

�� raises a host of additional di�

cult issues� ranging from the soundness of proposed methodologies and their assumptions� to
cost�bene�t tradeo�s� to characterization of dynamical model errors� to long�term stability
of the data assimilation process itself� and to observability of the geophysical phenomena
under investigation�

The mathematical framework of estimation theory provides many of the tools needed to
understand and approach a broad range of data assimilation problems� Estimation theory
traces its origins to the e�orts of astronomers some ��� years ago to understand and predict
the motion of our solar system�s planets� moons and asteroids� The �eld began to mature
only in the �
���s and �
���s� along with the theory of stochastic di�erential equations and
the development of digital computers� An excellent historical survey� along with a collection
of seminal articles on various aspects and applications of estimation theory� can be found
in the volume of Sorenson ��
	��� Applications to numerous engineering disciplines are by
now standard� and textbooks in the engineering and mathematics literatures are plentiful�
Among these� roughly in order of increasing level of di�culty� are Gelb ��
���� Anderson
and Moore ��
�
�� Maybeck ��
�
�� Catlin ��
	
�� Jazwinski ��
���� Casti ��
	��� and
Omatu and Seinfeld ��
	
�� In the more specialized Earth Sciences arena� recent texts on

�
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data assimilation include Menke ��
	��� Tarantola ��
	��� Daley ��

��� Bennett ��

���
and Wunsch ��

���

In the present article� we will see that estimation theory constitutes a natural mathemat

ical foundation for the emerging science of data assimilation� First and foremost� estimation
theory o�ers a precise and e�ective way of thinking about data assimilation science� Es

timation theory provides a comprehensive language� a broad conceptual framework� and a
number of algorithms and approaches for addressing the open questions and scienti�c goals
of the data assimilation enterprise�

While engineering applications of estimation theory are often small�scale and some

times linear� Earth System data assimilation problems usually involve complex� nonlinear�
large�scale models� For this reason alone� there is a substantial gap between estimation
theory and Earth System data assimilation practice� The purpose of this article is to help
bridge this gap by exposing some of the basic concepts of estimation theory to the broad
Earth System data assimilation community� The focus will be on the guiding principles of
estimation theory� rather than on actual computational algorithms suggested by the theory�
Indeed� the sheer complexity of Earth System data assimilation problems necessitates sen

sible approximation� along with estimation theory� a great deal of physical reasoning and
a number of techniques from modern computational mathematics and statistics must also
play a large role in actually solving the fundamental problems of data assimilation in the
Earth Sciences�

Estimation theory is by now a vast �eld� and a survey given in a single article would nec

essarily be perfunctory� The central ideas of estimation theory are few in number� however�
so we have decided to treat just these� and to do so fairly thoroughly and rigorously� in a
self�contained fashion� Further� to keep the mathematics accessible� most of the treatment
will be carried out in a discrete setting� This article is therefore not a literature review�
in fact� much of the material here can be located in the standard textbooks cited above�
Our hope is to provide a reasonable starting point for newcomers to the �elds of estimation
theory and data assimilation� Readers who are already familiar with estimation theory
may want to skip to x �� where we discuss some continuum aspects of estimation theory� or
perhaps to x ���� where nonlinearity due to non�Gaussian errors is described�

This article is organized as follows� In x � we introduce a generic discrete stochastic�
dynamic model of the Earth System component�s� under consideration� along with a generic
discrete stochastic model of the observations of the system� These two models� or variants
thereof� and the probabilistic assumptions made in them� lie at the core of all estimation�
theoretic approaches to data assimilation problems� Here the discrete dynamics are assumed
given� and the di�erence between the discrete dynamics and the governing continuum dy

namics is accounted for by model error� represented by stochastic forcing� Since the system
state is assumed discrete� whereas it is the continuum state that is observed� the observation
model includes a representativeness error term as well as a measurement error term� While
in x � we are able to de�ne model error and representativeness error rather precisely� it is
not until x � that we show with any rigor how these error terms can actually be treated in
data assimilation problems�

�
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In x � and Appendix A we address the question of what constitutes an optimal estimate
of the system state� It is shown that the conditional mean estimate is always unique� and has
the intuitively appealing property of being also theminimum variance estimate for nonlinear
problems as well as linear ones� independently of the nature of the probability densities of
the various error sources� The conditional mode �maximum a posteriori� estimate� on the
other hand� is generally not unique� but the set of conditional modes may yield a great
deal more physical information about the system state than the conditional mean estimate
alone� In x � the three basic categories of state estimation problems are also introduced�
the �ltering� prediction and smoothing problems� It is shown that the four�dimensional
variational methods now under active study at several institutions represent approximate
conditional mode estimation algorithms for the �xed�interval smoothing problem�

Section � gives a detailed derivation of the Kalman �lter� which provides the conditional
mean estimate for linear �ltering problems with Gaussian�distributed errors� The purpose of
this derivation is to illustrate the role of the various assumptions on which the Kalman �lter
is based� For most Earth System data assimilation problems� the standard Kalman �lter
can only be considered as a prototype algorithm in view of the many assumptions involved
and in view of its computational requirements� it is certainly not an end unto itself� To
progress toward less restrictive estimation procedures� it is important to understand the
Kalman �lter �rst� Following the derivation of the Kalman �lter� we discuss a number of
its important properties and some of its simple generalizations�

Two nonlinear generalizations of the Kalman �lter are described in x �� In the �rst� it
is assumed that the observations are related nonlinearly to the state variables� After de

scribing the practical di�culties associated with obtaining the conditional mean estimate in
this case� we develop a standard approximate method of treating observation nonlinearity�
known as the locally iterated extended Kalman �lter �EKF�� In the locally iterated EKF�
the conditional mean is approximated by a conditional mode at observation times� It is
shown that the resulting algorithm for processing the observations is algebraically equiv

alent to nonlinear three�dimensional variational analysis algorithms� which are therefore
approximate conditional mode estimation algorithms� While three� and four�dimensional
variational algorithms are often derived without reference to probabilistic concepts� we see
that� like the �extended� Kalman �lter� they rely on assumptions of Gaussian�distributed
errors with mean zero�

In the second generalization� we describe by example an exact� but nonlinear and non�
iterative� conditional mean estimation procedure in case the measurement errors are not
Gaussian�distributed� lognormally�distributed errors are considered instead� Such errors
may arise from measurements and dynamical models of nonnegative quantities� such as
the mixing ratio of atmospheric trace constituents� Relationships between the multivariate
Gaussian �normal� and lognormal probability densities appear in Appendix B�

In x � we give a simple example illustrating a number of continuum aspects of esti

mation theory� The governing continuum dynamics consists of the unforced scalar linear
advection equation with an unknown Gaussian and statistically homogeneous initial state�
Observations taken at various instants of time are arbitrary bounded linear functionals of

�
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the continuum state� with Gaussian state�independent measurement error� It is shown
�rst that while an exact conditional�mean �lter algorithm can be written down for this
problem� it cannot be implemented exactly on a computer� Following this demonstration�
rather than assuming that a discretization of the continuum dynamics is already given� as
in x �� we �rst de�ne a �nite�dimensional conditional�mean �ltering problem to be solved
for the continuum system� and only then employ this de�nition to develop an appropriate
discretization and an overall �lter algorithm� By proceeding in this manner� it turns out
for this simple example that model error does not arise� and that representativeness error
can be treated exactly� The complete �lter algorithm is also exact and can be implemented
exactly on a computer� Supporting results� and for completeness a treatment of nonlinear
dynamics� are contained in Appendix C�

By drawing upon the salient features of this simple example� we discuss �nally some
of the problems and prospects in accounting for model error and representativeness error
in more realistic Earth System data assimilation problems� In particular it is seen that
climatology� de�ned appropriately� may play an important role in accounting for represen

tativeness error�

� Discrete stochastic�dynamic

and stochastic observation models

��� Discrete stochastic�dynamic model

The Earth System component �or components� of interest will generally be described by
a system of nonlinear partial di�erential equations �PDEs�� Denote by wk the vector of
prognostic �state� variables of the PDE system at time tk� The elements of the vectorwk are
functions� and wk is assumed to belong to some function space B� Assuming the governing
PDEs to be well�posed in the sense of Hadamard �e�g�� Courant and Hilbert �
��� Chapter
III� x ��� there is a unique solution operator� or propagator g that yields the solution wk

given the solution wk�� at an earlier time tk���

wk � g�wk��� � �����

for k��� �� �� � � � � While this system could be stochastically forced� for example through un

certain boundary conditions� here we neglect stochastic forcing to simplify the presentation�
The system could also be internally forced by stochastic free parameters to be estimated
during the course of data assimilation� for example in physical parameterizations� While a
large body of literature is concerned with parameter estimation �e�g�� Maybeck �
�
� Chap

ter ��� Sorenson �
	�� Caglayan and Lancraft �
	�� Daley �

�� Ghil �

��� to con�ne
the discussion we do not consider this important realm here� Parameters and forcing are
considered �xed� so that the propagator g is deterministic� Explicit time dependence of
g is also suppressed for notational convenience� as is dependence upon the time interval
tk�tk��� Although the system of PDEs itself from which we have started may be only
approximate �e�g�� Phillips �
���� we take ����� to be a correct and complete representation

�
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of reality� This assumption� along with the assumption that g is deterministic� is revisited
in x ����

We know neither the continuum state wk� in particular the initial condition w�� nor
even the operator g� However� residing on our computer will be an approximate� discretized
version of ������

wd
k � f

�
wd

k��

�
� �����

for k��� �� �� � � � � the superscript d denoting � discrete�� Here wd
k is an n�vector approxi


mating� with some error� the continuum state wk whose evolution is given by ������ and f
is the discrete propagator�

Next we need to de�ne the true state to be estimated on the basis of observations
available at times t�� t�� t�� � � � � along with an evolution equation for it� Although the
continuum state given by ����� would appear to be the most natural candidate� we will
de�ne the true state to be a representation of the continuum state on a discrete space� so
that it can be compared directly with the approximate discrete state given by ������ this
approach will be elaborated upon and exploited more fully in x �� To this end� de�ne a
linear operator � from B to an n�dimensional function space Bn in a manner appropriate
for the discretization ������ For example� if the elements of the n�vector wd

k are supposed to
represent averages over grid volumes� then Bn would consist of piecewise constant functions
and the n�vector �wk would consist of the averages of wk over grid volumes� In fact� we
de�ne the �discrete� true state wt

k as

wt
k � �wk � �����

for k��� �� �� � � � � this is the representation on Bn of the continuum statewk �cf� Cohn and
Dee �
		� x ��� We remark that � should be a projection operator� that is� ����� but we
do not require � to be a projection operator until x ��

The true state wt
k is still unknown� since wk is unknown� However� operating with �

on both sides of ����� gives a discrete evolution equation for wt
k�

wt
k � f

�
wt

k��

�
� �tk�� � �����

where

�tk � �g�wk�� f��wk� � �����

The operator f in ����� is the discrete propagator� to which we have access� The forcing
term �tk�� is the model error from time tk�� to time tk � Observe that the model error
de�ned in ����� is generally �continuum� state�dependent� even if the operators f and g

are linear� This state dependence� as well as the dependence upon the unknown continuum
propagator g� renders the model error both unknown and unknowable from a deterministic
viewpoint� However� it should be in some sense small� provided that f approximates g
well� For these reasons it is appropriate� and in any case one has little choice other than�
to represent this model error as a stochastic perturbation to ������ Here we shall simply

�
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assume the existence of such a representation with known bias and covariance �cf� Derber
�
	
� Leith �

�� Daley �

�c� Bennett et al� �

�� Dee �

�� Dee and da Silva �

��� This
will allow us to expose the probabilistic underpinnings of estimation theory in xx � to � in
a relatively simple manner� Further discussion of stochastic representation of model error
is deferred to x ��

Thus we write

�tk � Gk

�
wt

k

�
�tk � �����

where Gk is an n�m matrix depending on wt
k� re�ecting the state dependence of model

error� and �tk is an m�vector stochastic process with mean

b�tk � �
�tk
�

�����

and covariance matrix

Qk �
D�
�tk � b�tk���tk � b�tk�TE � ���	�

h i denoting the expectation operator �see Appendix A�� Here Gk � b�tk and Qk are all
assumed known� Substituting ����� into ����� gives

wt
k � f

�
wt

k��

�
�Gk��

�
wt

k��

�
�tk�� � ���
�

our stochastic�dynamic model for the evolution of the discrete true state wt
k� Since �

t
k is a

stochastic process� so is wt
k� The initial condition wt

� for ���
� may also be stochastic�

��� Discrete stochastic observation model

It remains to formulate a stochastic model of the observed data� on the basis of which the
true state wt

k is to be estimated� Suppose that at times tk � k��� �� �� � � � � a number pk of
observations are available and placed into a pk�vector wo

k� Since these are observations of
the continuum state wk� contaminated by some error� we write

wo
k � hck�wk� � �mk � ������

where hck is the continuum forward observation operator from B to IRpk and �mk is the
measurement error� The latter is considered stochastic� and independent of wk� with known
mean b�mk �

b�mk � h�mk i � ������

which is the measurement error bias� and known covariance matrix Rk�

Rk �
D
��mk � b�mk ���mk � b�mk �TE � ������

While additive measurement error is assumed in ������� multiplicative error is considered in
x ����

�
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The observation operator is linear for state variables that are observed directly� for
example by radiosondes� For most remotely�sensed data� the raw observations �such as
radiances or radar backscatter� are nonlinear functions of the continuum state� and the cor

responding elements of hck�wk� would involve radiative transfer calculations� for example�
which are integrals of nonlinear functions of wk � In either case� the observation operator
will usually depend on a number of parameters� As was the case for the propagator� such
parameters can be estimated along with the state� although we do not consider this possi

bility here� Instead we consider parameters to be �xed and therefore hck to be deterministic�
the so�called perfect forward model assumption�

Now the stochastic�dynamic model ���
� was formulated in terms of the discrete true
state wt

k��wk� so we will need to introduce a discrete forward observation operator hk
that acts on wt

k rather than wk� and rewrite the observation model ������ as

wo
k � hk

�
wt

k

�
� �ok � ������

where

�ok � �rk � �mk ������

is the total observation error� and

�rk � �rk�wk� � hck�wk�� hk��wk� ������

is the error of representativeness �cf� Lorenc �
	��� which is �continuum� state�dependent�
even for linear forward observation operators� Note that the representativeness error ������
has the same form as the model error ������ so the problem of stochastic modeling of the
representativeness error is in a sense equivalent to that of modeling the model error in the
present discrete formulation�

To understand better the nature of representativeness error� let us write ������ as the
sum of two terms�

�rk � �
�

k � �
��

k � ������

where

�
�

k � hck�wk�� hck��wk� � ������

�
��

k � hck��wk�� hk��wk� � ����	�

and we assume that Bn is a subspace of B� so that the expression hck��wk� is well�de�ned��

Now �
��

k can be made as small as one pleases by employing high�order accurate integration
and interpolation formulas in hk to approximate hck� at least in principle� since both opera

tors in ����	� act on the same discrete true state wt

k��wk� On the other hand� �
�

k depends
on the small�scale variability of wk� For instance� to a linear approximation ������ may be
written as

�
�

k � Hc
k�I���wk � ����
�

�A similar decomposition of the model error ����� has been discussed by M�enard ����	
 Appendix A��

�
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where

Hc
k � �hck�w�

�w

����
w��wk

� ������

Hc
k in ����
� operates on the unresolved portion �I���wk of the continuum state wk � For

highly variable �elds such as winds� moisture and trace constituents� it is apparent that this
portion of the representativeness error could easily dominate the measurement error itself�

A complete discrete theory should therefore include an adequate �stochastic� model
of the representativeness error� Such a model is developed in x � for a speci�c example�
Rather than attempting any degree of generality here� in xx � to � we shall simply ignore
representativeness error� our observation model is ������ with �rk�� in ������ and the �rst
two moments of �ok��mk given in ������ and ������� While this is not at all realistic �and not
recommended for real problems��� it shall serve our purpose of introducing the fundamentals
of estimation theory in a fairly simple context�

	 Conditional mean and conditional mode estimation

��� Introduction

Since the state wt
k that we would like to estimate is given by the stochastic�dynamic model

���
�� it has a probability distribution function� We will assume all distribution functions
encountered here to be di�erentiable� so in fact wt

k has a probability density function p
�
wt

k

�
�

This is a function of n variables�

Suppose for the moment that no observations are available� If �tk�� in ���
� were Gaus

sian �see x � for the de�nition of the multivariate Gaussian density� and white in time�
then the evolution of p

�
wt

k

�
� had we discretized only space and not time in the formu


lation of ���
�� would be governed by the Fokker�Planck �forward Kolmogorov� equation
�cf� Epstein �
�
��y This is a PDE in n independent ��spatial�� variables plus time� with
initial condition p

�
wt
�

�
� In the absence of model error� this equation simpli�es to the Liou


ville equation� which has been studied by Ehrendorfer ��

�a� b�� For the size n typical of
Earth Science applications� for example n��������� in numerical weather prediction� these
equations cannot be solved directly in general� If they could� however� from the resulting
knowledge of p

�
wt

k

�
one could then in principle calculate directly such important statistics

as the ensemble mean
�
wt

k

�
and the ensemble covariance matrix� by explicit integration

in n dimensions� Since this appears not to be possible� Monte Carlo and related methods
have recently been explored for ensemble mean prediction �e�g�� Toth and Kalnay �

�� and
references therein�� In practice� furthermore� generally one does not know the initial density
p
�
wt
�

�
� nor the function Gk

�
wt

k

�
in ���
�� nor the density of the error process �tk�

In any case we see that� though unavailable� it is the entire probability density function
p
�
wt

k

�
that constitutes the �complete solution� of the prediction problem� In the same way�

yAn analogous equation exists for the discrete�time case� for example see Jazwinski ���
�
 x �����
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it is the conditional probability density p
�
wt

k

��Wo
�

�
that constitutes the complete solution for

various data assimilation problems� �See Appendix A for a brief discussion of conditional
densities and expectations�� Here byWo

� we denote the set of realizations of all observations
������ available up to some time t��

Wo
� � fwo

�� w
o
�� � � � � w

o
�g � �����

The density p
�
wt

k

��Wo
k

�
yields the solution of the �ltering problem at times tk � k��� �� � � � �

while the density p
�
wt

k

��Wo
k�L

�
with L �xed yields the solution of the �xed�lag smooth�

ing problem at times tk �e�g�� Cohn et al� �

�� M�enard and Daley �

��� The density
p
�
wt

k

��Wo
�

�
for � �xed and k�� � �� �� �� � � � � gives the solution of the prediction problem

when there are observed data available from time t� to time t�� See the texts on estima

tion theory cited in the Introduction for further discussion of the �ltering� smoothing� and
prediction problems� and Ghil ��

�� for a review of applications to Earth System data
assimilation�

The conditional densities p
�
wt

k

��Wo
�

�
� like the unconditional ones p

�
wt

k

�
� are functions of

a large number of variables� Unlike unconditional densities� conditional densities are random
functions� because they depend on the observations� For both reasons� in large Earth Science
data assimilation problems� it is not possible to calculate these densities explicitly� On the
other hand� algorithms for calculating the evolution of certain statistics of these densities
are available� as discussed in xx ���� under a number of simplifying assumptions� The �rst
question� though� is which statistics do we want to evolve�

Two possibilities suggest themselves immediately� the conditional mean
�
wt

k

��Wo
�

�
� and

the conditional mode� which we denote bym
�
wt

k

��Wo
�

�
� Both have obvious intuitive appeal�

Both are also random n�vectors� since they depend upon realizations of the observations�
The conditional mean is the �average� value of the conditional density �see Appendix A��
It also has the important theoretically and intuitively appealing property of being the
minimum variance estimate in most data assimilation problems� including the �ltering�
smoothing and prediction problems described above� We now explain this property� then
return to the subject of conditional mode estimation�

��� Conditional mean estimation

Let we
k be an n�vector which is an estimate of the n�vector true state wt

k� Assume that we
k

is a function of the available observed data Wo
� � and de�ne the estimation error

�k � wt
k �we

k � �����

Now let S be an arbitrary �but deterministic� n� n symmetric positive de�nite matrix� and
de�ne the quadratic loss function L��k��

L��k� � �Tk S �k � �����

Note that L is a scalar� and that it is also a random variable� since �k is stochastic� For an
appropriate choice of the dependent variables of the numerical model ������ the matrix S
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might be de�ned in such a way that L represents a discrete version of the total energy of
the estimation error� for example�

An appealing way to de�ne the estimate we
k� then� would be to de�ne it to be the vector

that minimizes the expected loss hL��k�i� for example the expected total energy� or more
generally the total variance of the estimation error� It turns out that the minimizer is none
other than the conditional mean� the minimum of hL��k�i with respect to we

k is attained�
uniquely in fact� by taking we

k to be the conditional mean�

we
k �

�
wt

k

��Wo
�

�
� �����

Thus the conditional mean estimate is also called the minimum variance estimate�

This result �cf� Jazwinski �
��� Theorem ����� proven in Appendix A� is extremely gen

eral� For instance� notice that the minimizer is independent of the particular choice of
the positive de�nite matrix S� the conditional mean simultaneously minimizes all quadratic
functionals of the estimation error� In other words� in conditional mean estimation one never
has to make an arti�cial choice of a particular quadratic functional to minimize� Further

more� no assumptions about the nature of the probability densities of the stochastic forcing
in ���
� and ������ are required for this equivalence between conditional mean estimation
and minimum variance estimation� and consequently no assumptions about the conditional
density p

�
wt

k

��Wo
�

�
are required� However� under an assumption that p

�
wt

k

��Wo
�

�
is sym


metric about its mean� and is unimodal �has only one local maximum�� it turns out that
the conditional mean minimizes the expected value of a much larger class of loss functions
than just quadratic ones �see Jazwinski �
��� Theorem ����� this is the case� for instance�
if p

�
wt

k

��Wo
�

�
is Gaussian� Another important property of the conditional mean is that it

provides an unbiased estimate�

h�ki �
D
wt

k �
�
wt

k

��Wo
�

�E
�
�
wt

k

� � ��
wt

k

��Wo
�

��
� � � �����

see equation �A����� For all these reasons� the goal of conditional mean estimation� that
is� of de�ning the state estimate in data assimilation problems by ������ is particularly
compelling� and much literature in estimation theory is concerned with this goal� In xx ���
we develop evolution equations for the conditional mean

�
wt

k

��Wo
k

�
for the �ltering problem�

A potential drawback of conditional mean estimation occurs when the conditional den

sity is multimodal �has several local maxima�� as may arise in nonlinear problems with
multiple equilibria or multiple attractor basins� see Evensen ��

��� Ghil ��

��� and refer

ences therein� As a simple example� if the conditional density were bimodal and symmetric�
then the conditional mean would lie at a minimum of the conditional density function�
which would represent an unstable equilibrium point� The number of modes may increase
with the dimensionality n of the problem under consideration� However� it is intuitive that
the availability of dense observed data also counteracts this tendency� plentiful data serve
to de�ne the attractor basin in which the state lies�

In large�scale Earth System data assimilation problems� it is not known whether �or
when� the conditional densities have multiple modes� However� Li ��

�� has demonstrated
the existence of multiple modes for a simple system of three quadratically interacting Rossby

��
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modes� Bennett et al� ��

�� found unique modes in all but one of ten cases of tropical
cyclones� B urger and Cane ��

�� have devised an estimation technique which attempts to
account for multimodality�

��� Conditional mode estimation

We conclude this section with a brief discussion of conditional mode estimation� also known
as maximum a posteriori estimation �Maybeck �
�
� x ���� Sorenson �
	�� Chapter ���
Jazwinski ��
��� xx ���� ����� develops equations for the evolution of the conditional mode�
assuming its uniqueness� A simpler approach is known in control theory literature as Pon

tryagin minimization �M�enard and Daley �

�� and in oceanographic literature as the gen

eralized inverse �Bennett �

�� Bennett et al� �

��� These approaches� like the Kalman
�lter� are based on a number of simplifying probabilistic assumptions�

Speci�cally� suppose that G in ���
� is state�independent�

Gk��

�
wt

k��

�
� Gk�� � �����

that �tk in ���
� is Gaussian with zero mean and white in time�

�tk � N��� Qk��
D
�tk
�
�t�
�TE

� � for k �� � � ����a� b�

that �ok in ������ is Gaussian with zero mean and white in time�

�ok � N��� Rk��
D
�ok��

o
��

T
E

� � for k �� � � ���	a� b�

that wt
� is Gaussian with mean bwt

� and covariance P��

wt
� � N

�bwt
�� P�

�
� ���
�

and that �tk� �
o
k and wt

� are mutually uncorrelated�D
�tk
�
wt
�

�TE
�

D
�ok
�
wt
�

�TE
�
D
�tk��

o
k�

T
E

� � � �����a� b� c�

Suppose also that the covariance matrices P��Qk andRk are all nonsingular� hence positive
de�nite� Then it can be shown �cf� x � below� Jazwinski �
��� pp� �������� Lorenc �
	��
that the conditional density p

�
wt
�� w

t
�� � � � � w

t
N

��Wo
N

�
is proportional to exp ��JN �� where

JN is de�ned as

JN �
�

�

�
wt
� � bwt

�

�T
P��
�

�
wt
� � bwt

�

�
�

�

�

NX
k��

��ok�
TR��

k
�ok �

�

�

NX
k��

�
�tk��

�T
Q��

k���
t
k�� �

������

The assumption that
D
�tk��

o
k�

T
E
�� may be removed by including a cross�covariance term

in ������� The assumptions that b�ok�� and b�tk�� may also be removed by subtracting b�ok
and b�tk from �ok and �tk � respectively� in �������

��
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Upon substituting ���
� and ������ into ������� assumingGk�� is invertible� it is seen that
JN depends only upon the free parameters �n�vectors� wt

�� w
t
�� � � � � w

t
N � The conditional

mode�s�� or maxima of the conditional density� can therefore be found by minimizing JN
with respect to wt

�� w
t
�� � � � � w

t
N � A set of minimizing states

�
wt
�� w

t
�� � � � � w

t
N

�
is called

a modal trajectory� For �xed N � this represents a solution of the �xed�interval smoothing
problem�

For problems of the size encountered in the Earth Sciences� minimization of ������ is
a computationally imposing task� since the minimization is with respect to nN scalar pa

rameters� The representer method �Bennett et al� �

�� reduces the size of this task by
reducing the e�ective number of degrees of freedom to the number of observations available
over the time interval !t�� tN "� A di�erent simpli�cation of the computational e�ort can be
made by introducing one additional assumption� namely� to suppose that �tk�� for all k�
Under this perfect dynamical model assumption� the �nal summation in ������ disappears�
Upon substituting ������ into ������ and imposing ���
� with all �tk�� as a constraint�
JN now depends on� and can be minimized with respect to� only one free n�vector� wt

��
for instance� or wt

N � This is the assumption made in current four�dimensional variational
techniques ��D�VAR� e�g�� Andersson et al� �

��� and has been studied by M�enard and
Daley ��

��� Thus� under a number of assumptions� these techniques attempt to calculate
the modal trajectory� Nonuniqueness of the minimizing wt

� would re�ect either inappro

priate assumptions or genuine multimodality of the corresponding conditional probability
density� Simulated annealing algorithms �e�g�� Tarantola �
	�� can be used to locate the
global minimum in this case� Courtier et al� ��

�� have introduced a number of additional
approximations that turn the �D�VAR problem into a quadratic minimization problem� in
which case the minimizer is always unique�

One can also view the minimization of JN as a purely deterministic problem of mini

mizing errors� in which case P� and Rk do not have a probabilistic interpretation and the
minimization of JN �under the perfect dynamical model assumption� can be regarded as
least�squares curve��tting of a deterministic model trajectory to the observed data� How

ever� the framework of estimation theory makes clear the probabilistic interpretation of the
goal of variational methods� that of conditional mode estimation� which in general is distinct
from conditional mean estimation� Jazwinski ��
��� p� ���� gives an interesting example of
this di�erence�

The di�erence between conditional mode estimation and conditional mean estimation is
due primarily to nonlinearity� it is well�known that the two are identical for linear problems
with known� Gaussian statistics �see x � below�� For nonlinear problems� in principle one
would like to know both the mean and the mode� in fact all of the modes along with their
probabilities in case of more than one mode� Accomplishing this for large�scale Earth
Science applications� with a minimum number of simplifying assumptions� would appear to
be a very challenging task�

��
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 The discrete Kalman �lter

��� Introduction

We give here a complete derivation of the discrete Kalman �lter� which is the minimum
variance �that is� conditional mean� solution of the �ltering problem under the probabilistic
assumptions ������������� in case the propagator and observation operator are linear� This
derivation is direct in the sense that it is shown explicitly how to evolve the conditional
density p

�
wt

k

��Wo
k

�
� Numerous other� generally simpler derivations appear in the literature�

see Talagrand ��

�� for instance� and Examples ����������� in Jazwinski ��
��� for four
distinct alternative derivations� While the present derivation is not the simplest one� it
demonstrates clearly the roles of the various assumptions and thereby both indicates the
obstacles and provides necessary tools to begin relaxing some of them� as we show in the
following two sections�

Now let fk and hk be linear in their arguments �we introduce explicit time dependence
in the propagator f here�� so that Fk��fk�w���w and Hk��hk�w���w are constant ma

trices� of dimension n � n and pk � n� respectively� The stochastic�dynamic and stochastic
observation models ���
� and ������ then become

wt
k � Fk��w

t
k�� �Gk���

t
k�� � �����

wo
k � Hkw

t
k � �ok � �����

Suppose we are given the conditional density p
�
wt

k��

��Wo
k��

�
� The object� then� is

to calculate p
�
wt

k

��Wo
k

�
� the Kalman �lter is recursive� Denote the mean and covariance

matrix� respectively� of the density p
�
wt

k��

��Wo
k��

�
by

wa
k�� � �

wt
k��

��Wo
k��

�
� �����

Pa
k�� �

D�
wt

k�� �wa
k��

��
wt

k�� �wa
k��

�T ���Wo
k��

E
� �����

wa
k�� is the analysis at time tk��� an n�vector� the expected value of the true state wt

k��
conditioned on all observations available up to and including that time� while Pa

k�� is the
analysis error covariance matrix� an n � n matrix� at time tk��� At time t� there are no
observations� so from ���
� it follows that p

�
wt
�

�
is a Gaussian density with mean wa

�� bwt
�

and covariance matrix Pa
��P�� We will see that if p

�
wt

k��

��Wo
k��

�
is Gaussian then so is

p
�
wt

k

��Wo
k

�
� so by induction it will follow that all the densities p

�
wt
�

��Wo
�

�
� p
�
wt
�

��Wo
�

�
� � � � �

are in fact Gaussian� There are two main steps to this demonstration� and to the Kalman
�lter algorithm itself�

��
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��� The forecast step

First denote the mean and covariance matrix� respectively� of the density p
�
wt

k

��Wo
k��

�
by

w
f

k � �
wt

k

��Wo
k��

�
� �����

P
f

k
�

�	
wt

k �w
f

k


	
wt

k �w
f

k


T ����Wo
k��

�
� �����

w
f

k
is the forecast at the new time tk� an n�vector� the expected value of the true state wt

k

conditioned on all observations up to the previous time tk��� while P
f

k
is the forecast error

covariance matrix� an n � n matrix� at time tk � Substituting ����� into ����� gives

w
f

k
� Fk��

�
wt

k��

��Wo
k��

�
� Gk��

�
�tk��

��Wo
k��

�
� �����

since Fk�� and Gk�� are constant �that is� deterministic� matrices� cf� ������ The �rst
expectation here is wa

k�� according to de�nition ������ The second one is the unconditional
expectation

�
�tk��

�
according to the whiteness assumptions ����b� and ���	b�� along with

������� and therefore vanishes under assumption ����a�� Thus we have

w
f

k
� Fk��w

a
k�� � ���	�

which is indeed a forecast to time tk from the analysis at time tk�� via the linear propagator
Fk���

Substituting ����� and ���	� into ����� gives

P
f

k
�

D�
Fk��

�
wt

k���wa
k��

�
�Gk���

t
k��


�
Fk��

�
wt

k���wa
k��

�
�Gk���

t
k��


T ���Wo
k��

E
�

���
�

The cross�terms here vanish by ����b�� ���	b� and ������� leaving

P
f

k
� Fk��P

a
k��F

T
k�� � Gk��Qk��G

T
k�� � ������

where again we have used ����� and ����a�� along with the de�nition ����� of Pa
k��� Equation

������� which gives the evolution ofPf
k starting fromPa

k��� is often the most computationally
demanding portion of the Kalman �lter� since it involves large matrix multiplications� For
reviews of e�orts to ameliorate this computational burden� see Todling and Cohn ��

��
and Ghil ��

��� Of related interest are the recent articles by Cohn and Todling ��

���
Dee ��

�� and Verlaan and Heemink ��

���

Equations ���	� and ������ constitute the forecast step of the discrete Kalman �lter� Note
that no Gaussian assumptions were used in their derivation� However� if p

�
wt

k��

��Wo
k��

�
is Gaussian� then so must be p

�
wt

k

��Wo
k��

�
since ����� is a linear combination of Gaussian

random vectors� In fact� we have just derived the mean wf

k
and covariance matrix Pf

k
of

this conditional density�

��
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��� The analysis step

Here is where the Gaussian assumptions are needed quite explicitly� First� however� we
develop the update equation for p

�
wt

k

��Wo
k

�
given p

�
wt

k

��Wo
k��

�
in the absence of any as


sumptions about the nature of these densities� for use both here and in x �� By repeatedly
applying the de�nition �A�
� of conditional probability densities� we have

p
�
wt

k

��Wo
k

�
� p

�
wt

k

��wo
k� Wo

k��

�
�

p
�
wt

k� w
o
k� Wo

k��

�
p
�
wo

k� Wo
k��

�
�

p
�
wo

kjwt
k � Wo

k��

�
p
�
wt

k� Wo
k��

�
p
�
wo

k� Wo
k��

�
�

p
�
wo

kjwt
k � Wo

k��

�
p
�
wt

k

��Wo
k��

�
p
�Wo

k��

�
p
�
wo

kjWo
k��

�
p
�Wo

k��

�
�

p
�
wo

kjwt
k � Wo

k��

�
p
�
wt

k

��Wo
k��

�
p
�
wo

kjWo
k��

� � ������

This is a quite general result� and holds for the nonlinear equations ���
�� ������ with no
assumptions on the indicated densities �other than their existence�� as well as for the linear
equations ����� and ������ It is a version of Bayes� rule�

An important simpli�cation follows� however� from the whiteness assumption on f�okg�
Referring now to the nonlinear observation model ������� observe that

p
�
wo

kjwt
k� Wo

k��

�
� p

�
wo

kjwt
k

�
� ������

since given wt
k� w

o
k depends only on �ok� which in turn is independent of Wo

k��� fwo
�� w

o
��

� � � � wo
k��

�
under assumption ���	b��z Thus ������ becomes

p
�
wt

k

��Wo
k

�
�

p
�
wo

kjwt
k

�
p
�
wt

k

��Wo
k��

�
p
�
wo

kjWo
k��

� � ������

It remains to evaluate each of the three densities on the right side of ������� We already

have p
�
wt

k

��Wo
k��

�
� it is Gaussian with mean wf

k
� given by ���	�� and covariance matrix Pf

k
�

given by ������� From ����� we have�
wo

k jwt
k

�
�

�
Hkw

t
k � �ok

��wt
k

�
� Hkw

t
k � ������

since �ok is state�independent and has mean zero according to ���	a�� Therefore�	
wo

k �
�
wo

k jwt
k

�
	
wo

k �
�
wo

kjwt
k

�
T ����wt
k

�
�

D
�ok��

o
k�

T
���wt

k

E
� Rk � ������

zHere we have used the fact that uncorrelatedGaussian random vectors are independent
 but rather than
assuming that the vectors �ok are Gaussian and mutually uncorrelated we could have assumed instead that
�
o
k is independent of �o� for ��k without any Gaussian assumption
 leading still to the conclusion that
 given
w

t
k
 �

o
k is independent of Wo

k���

��
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according to ���	a� and ������ Since �ok was assumed Gaussian� p
�
wo

kjwt
k

�
is then Gaussian

with mean Hkw
t
k and covariance matrix Rk �

Also from ����� we get�
wo

kjWo
k��

�
�

�
Hkw

t
k � �ok

��Wo
k��

�
� Hkw

f

k
� ������

from de�nition ����� and assumptions ���	b�� �����c�� along with the assumption ���	a� that
h�oki��� We then have�	

wo
k �

�
wo

kjWo
k��

�
	
wo

k �
�
wo

k jWo
k��

�
T ����Wo
k��

�
�

�h
Hk

	
wt

k �w
f

k



� �ok

ih
Hk

	
wt

k �w
f

k



� �ok

iT ����Wo
k��

�
� ������

Again the cross�terms vanish as in ���
�� leaving�	
wo

k �
�
wo

kjWo
k��

�
	
wo

k �
�
wo

kjWo
k��

�
T ����Wo
k��

�
� HkP

f
kH

T
k �Rk �

����	�

from ���	a� and ������� The density p
�
wo

kjWo
k��

�
is Gaussian because �ok was assumed to

be Gaussian�distributed and p
�
wt

k

��Wo
k��

�
is Gaussian�

Substituting these results into ������ and using the de�nition of the multivariate Gaus

sian density� we have �nally

p
�
wt

k

��Wo
k

�
� p� p�

p�
� ����
�

where

p� � �����
p

� jRj� �

� exp
h
��
�
�
wo�Hwt

�T
R��

�
wo�Hwt

�i
� ������

p� � �����
n
�

��Pf
��� �

� exp
h
��
�

�
wt�wf

�T�
Pf

����
wt�wf

�i
� ������

p� � �����
p

�

��HPfHT �R
��� �

� exp
h
��
�

�
wo�Hwf

�T�
HPfHT �R

����
wo�Hwf

�i
�

������

where the symbol j j denotes the matrix determinant and for notational convenience we
have omitted the time index k which should appear on all vectors and matrices in ������ to
������� Thus�

p
�
wt

k

��Wo
k

�
� c exp

���

�
J
�
� ������

where

c � �����
n
� jRj� �

�

��Pf
��� �

�

��HPfHT �R
�� �� � ������

and

J �
�
wo�Hwt

�T
R��

�
wo�Hwt

�
�
�
wt�wf

�T�
Pf
����

wt�wf
�

� �wo�Hwf
�T�

HPfHT �R
����

wo�Hwf
�
� ������

��
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With considerable hindsight� de�ne Pa by

�Pa��� �
�
Pf

���
� HTR��H � ������

Pa will be shown to be the analysis error covariance matrix ����� at time tk � From the
Sherman�Morrison�Woodbury formula �e�g�� Golub and Van Loan �
	��� ������ may be
rewritten as

Pa � �I�KH�Pf � ������

where

K � PfHT
�
HPfHT �R

���
����	�

is the Kalman gain matrix� Substituting ������ into the expression PaHTR�� and using
����	� yields

PaHTR�� � K � ����
�

From ����
� it follows that�
wo�Hwt

�T
R��

�
wo�Hwt

�
�
��
wo�Hwf

��H�wt�wf
�
T

R��
��
wo�Hwf

��H�wt�wf
�


�
�
wo�Hwf

�T
R��

�
wo�Hwf

�
�
�
wt�wf

�T
HTR��H

�
wt�wf

�
� �wt�wf

�T
�Pa���

�
K
�
wo�Hwf

�

� �

K
�
wo�Hwf

�
T
�Pa���

�
wt�wf

�
� ������

Substituting this result into ������ and using ������ yields the expression

J �
�
wt�wf

�T
�Pa���

�
wt�wf

�
�
�
wo�Hwf

�T h
R��� �

HPfHT �R
���i�

wo�Hwf
�

� �wt�wf
�T
�Pa���

�
K
�
wo�Hwf

�
 � �
K
�
wo�Hwf

�
T
�Pa���

�
wt�wf

�
� ������

But from ����	� and ����
� it follows that

R��� �
HPfHT �R

���
�

�
HPfHT �R

��� ��
HPfHT �R

��R


R��

� KTHTR�� � KT �Pa���K � ������

so that we have �nally

J �
��
wt�wf

��K
�
wo�Hwf

�
T
�Pa���

��
wt�wf

��K
�
wo�Hwf

�

� ������

Now� to simplify the expression for the constant c in ������� let

M � HPfHT �R � ������

��
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and de�ne the partitioned matrix

A �
�

Pf PfHT

HPf M

�
�

�
In �

H Ip

��
Pf �

� R

��
In HT

� Ip

�
� ������

where In and Ip are the n � n and p� p identity matrices� It follows that

jAj �
��Pf

��jRj � ������

cf� Householder ��
��� p� ���� The matrix A may also be factored as

A �

�
In PfHTM��

� Ip

��
Pa �

� M

��
In �

M��HPf Ip

�
� ������

according to ������� ����	� and ������� from which it follows that

jAj � jPajjMj � ����	�

Therefore

jPaj �
��Pf

��jRjjMj�� � ����
�

and ������ becomes

c � �����
n
� jPaj� �

� � ������

Equations ������ and ������ show that the density p
�
wt

k

��Wo
k

�
in ������ is Gaussian with

mean �
wt

k

��Wo
k

�
� w

f

k � Kk

	
wo

k�Hkw
f

k



� ������

and covariance matrix�	
wt

k �
�
wt

k

��Wo
k

�
	
wt

k �
�
wt

k

��Wo
k

�
T ����Wo
k

�
� Pa

k � ������

where the time index has been re�introduced� Referring back to ������ ������ ������ and
����	�� we �nally have the analysis update equations for the Kalman �lter�

wa
k � w

f

k
� Kk

	
wo

k�Hkw
f

k



� ������

Kk � P
f

k
HT

k

	
HkP

f

k
HT

k �Rk


��
� ������

Pa
k � �I�KkHk�P

f

k
� ������

The complete Kalman �lter algorithm thus consists of these three equations� along with the
forecast equations ���	� and ������� This section concludes with a brief discussion of some
of the properties and generalizations of the Kalman �lter�

�	
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��� Properties

Observe �rst that the covariance evolution equations ������� ������� ������ do not depend

on the observations� so that the conditional covariances Pf

k
� Pa

k are actually unconditional
covariances� This property is a result of the linearity of ����� and ������ as well as the
assumption that all of the error statistics are Gaussian� For small enough problems the
covariance evolution� and in particular the sequence of Kalman gain matrices ������ needed
in ������� may therefore be precomputed under this rather restrictive scenario� before the
observations are actually taken� This property� along with the particular form of ���	� and
������� leads also to a number of algebraically equivalent forms of the Kalman �lter algorithm
stated here� which can reduce computational costs and�or enhance computational stability�
See Maybeck ��
�
� Chapter �� for a fairly complete discussion of alternative Kalman �lter
algorithms�

The Kalman �lter indeed acts as a �low�pass� �lter� removing unwanted noise from the
observations Wo

k � See Daley and M�enard ��

�� for a discussion of the �ltering properties
of the Kalman �lter�

There exists a large body of literature on stability properties of the Kalman �lter and
its sensitivity to parameters� beginning with Kalman�s ��
��� seminal article� and covered
well in most texts on estimation theory� The stability results depend heavily� in turn� on the
observability and controllability properties of the system ������ ����� under consideration�
also discussed in most texts� see also Cohn and Dee ��
		�� Ghil ��

���

An error sensitivity property of considerable practical importance is the following� In
practice we seldom know either the observation error covariance matrix Rk or the model
error covariance matrixQk � Suppose� however� that we have access to conservative estimates
of each� eRk and eQk � that is� eRk�Rk and eQk�Qk for each tk �� Then if we calculate
a Kalman �lter using eRk and eQk� the resulting approximate forecast and analysis error
covariances� denoted by ePf

k
and ePa

k� have the property that ePf

k
�P

f

k
and ePa

k�P
a
k � for each

tk � where P
f

k
and Pa

k now denote the actual covariances resulting from our �suboptimal� �lter

calculations involving eRk and eQk �Jazwinski �
��� Theorem ����� assuming a conservative
estimate ePa

��P
a
� also� Thus we know that we have computed conservative estimates of

P
f

k and Pa
k� and in particular we have conservative estimates of the forecast and analysis

error variances �diagonal elements of Pf

k and Pa
k� as well� More generally� the performance

evaluation equations can be implemented to study and interpret the results of numerous
suboptimal �lter schemes� in particular those that approximate the dynamics of Pf

k in
������� ������� cf� Todling and Cohn ��

��� Cohn and Todling ��

���

The e�ect of estimating Pf

k
conservatively� that is� of overestimating the forecast error

covariance matrix� is to assign more weight to the observed data than one would otherwise�
resulting in �noisier� analyses� This avoids the problem of �lter divergence �cf� Jazwinski
�
��� xx 	�	�	����� however� which occurs when the �lter �thinks� it is doing better than

�By A�B for symmetric matrices A and B of like dimension
 we mean that the di�erence A�B is
positive semide�nite�

�
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it actually is� that is� when P
f
k is underestimated and observations thereby receive too

little weight� in the extreme case� if observations are neglected then data assimilation
accomplishes nothing� and the estimated state drifts away according to the �incorrect�
model dynamics� Thus a standard rule�of�thumb is to estimate unknown error covariances
conservatively�

A fundamental property of the Kalman �lter is expressed by the Innovations Theorem
�Kailath �
�	� Theorem ��� which says that the sequence of innovations wo

k�Hkw
f

k
is

Gaussian and white in time� i�e���	
wo

k�Hkw
f

k


	
wo

��H�w
f

�


T�
� � for k �� � � ������

this can be veri�ed directly from the Kalman �lter equations and assumptions� In fact
a nonlinear version of this result is also true �Frost and Kailath �
��� Theorem ��� for
nonlinear observation models in continuous time with white� Gaussian� state�independent
observation error� and essentially !see their equations ��� and ���" no assumptions on the
nature of the probability density of the true state� hence on that of the density of the model
error� the �nonlinear� innovation process is still white and Gaussian for the optimal �con

ditional mean� i�e�� minimum variance� nonlinear �lter� While optimal �lters for nonlinear
problems cannot generally be expressed in closed form because the �rst and second moments
of p

�
wt

k

��Wo
k

�
become coupled with higher�order moments �see Appendix C��z this is still

a very powerful result� by routinely monitoring the observed�minus�forecast residuals for
whiteness� we can rationally assess the proximity of a given suboptimal �ltering algorithm
to optimality� and also assess putative improvements to the algorithm� Daley ��

�b� has
shown how such monitoring can even be useful in diagnosing weaknesses in an operational
atmospheric data assimilation system�

In fact� in numerical weather prediction and other large�scale data assimilation prob

lems� one does not generally know the form of the probability densities appearing in ������
from which the analysis equations ������������� were derived� For the various assumptions
in this section we have seen them to be Gaussian� but in practice one has at best only lim

ited knowledge of the ingredients wf

k
� Pf

k
� Hk and Rk of the analysis equations� let alone

any assurance that the densities are Gaussian� Yet these equations in fact are simply the
matrix formulation of the usual �optimal interpolation� analysis equations �e�g�� Bergman
�
�
� Lorenc �
	�� without data selection �da Silva et al� �

��� One expects� then� that
these equations can be derived from much simpler assumptions than those we have stated�
and indeed they can� as follows�

Given only the observation model ������ along with h�oki�� and
D
�ok��

o
k�

T
E
� Rk � and

no assumptions on the densities of wt
k and �ok themselves� then of all estimators of the lin�

ear form ������� the choice of Kk that minimizes the scalar
D�
wa

k�wt
k

�T
S
�
wa

k�wt
k

�E
for all

positive de�nite n � n matrices S is none other than the Kalman gain ������� cf� Jazwinski
��
��� Example �����k This is the best linear unbiased estimate �BLUE� property of the

zSee Casti �����
 pp� �
���
�� for an example of a nonlinear �ltering problem that does have a closed�
form solution�

kSee also x ��� of the present article� Observe also that for S�I
 this scalar is identical to trace Pa
k
 where

��
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Kalman �lter �more accurately� the best a�ne minimum variance estimate property� see
Catlin �
	
� x ����� The drawback� however� is that if the densities in ������ are not Gaus

sian� then the analysis equations ������������� do not give the conditional mean analysis�
which is the minimum variance analysis� Non�Gaussian densities lead to nonlinear analysis
equations for the conditional mean� even for linear observation operators� We return to this
subject in x ��

��� Generalizations

To bring the ideas of Kalman �ltering into the realm of actual Earth Science data as

similation problems� perhaps the most obviously necessary generalization is to nonlinear
observation operators and nonlinear dynamics� which are discussed in x � and Appendix C�
respectively� Also� in x � we have raised the necessity of careful treatment of continuum as

pects of the theory� which are discussed in x � and Appendix C� Generalization to smoothing
problems of various types have been mentioned already in x �� see Maybeck ��
�
� Chapter
	� and Anderson and Moore ��
�
� Chapter �� for fairly extensive discussions�

Here for completeness we mention just a few simple generalizations of the discrete linear
theory presented already� First� in the presence of known model error bias Gkb�tk�Gk

�
�tk
�
�

cf� ����� and ������ and�or known measurement error bias ������� it is straightforward to
generalize the standard Kalman �lter equations� The forecast equation ���	� becomes

w
f

k
� Fk��w

a
k�� �Gk��b�tk�� � ������

and follows readily from ������ The analysis equation ������ becomes

wa
k � w

f

k
�Kk

	
wo

k�Hkw
f

k
� b�ok
 � ����	�

which arises� for example� by considering wo
k�b�ok as an unbiased �pseudo�observation�

vector� The covariance equations ������� ������� as well as the equation for the Kalman gain
������ are seen to remain unchanged by following their derivation closely�

Model and observation biases� however� like their error covariances� are seldom actually
known� Rather� they either need to be estimated along with the state itself� or else their
presence should at least be accounted for in the �ltering procedure� The former approach can
be accommodated by state augmentation� that is� by simply including the bias parameters
as additional state variables to be estimated� This introduces additional computational
expense� and one must assume either that the biases are constant in time� or else have
access to a dynamical model for the biases �Jazwinski �
��� x 	���� In case the biases are
indeed constant in time� the latter approach� of accounting for biases but not estimating
them directly� is accomplished with less expense than the former� through a generalization
known as the Schmidt�Kalman �lter �Jazwinski �
��� x 	���� see also Caglayan and Lancraft
��
	�� for a nonlinear treatment� Dee and da Silva ��

�� have developed a model error bias

P
a
k was de�ned in �	�	�
 the minimization of which is often used as a heuristic criterion for deriving the

Kalman gain matrix�

��
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estimation scheme suitable for large�scale models� Derber ��
	
� has introduced a model
error bias estimation scheme in a variational context�

We conclude this section by mentioning that straightforward generalizations of the
Kalman �lter exist in case the model error and observation error are correlated with each
other �Jazwinski �
��� Examples ��� and ���� and in case the observation error is correlated
�rather than white� in time� provided it can be modeled as a Markov process �Jazwinski
�
��� Example ����� The case of time�correlated model error can also be treated� and has
been studied by Daley ��

�a��

� Nonlinear analysis updates

��� Introduction

Here we discuss the nonlinear analysis equations that arise when either the observation
operator h is nonlinear or the observation error density is not Gaussian� In the former case
it will be seen that in practice one can usually only obtain an approximate formula for the
minimum variance �conditional mean� analysis vector wa� The approximation described
here leads to the analysis step of the locally iterated extended Kalman �lter� which is seen
to be algebraically equivalent to global variational analysis algorithms �e�g�� Parrish and
Derber �

�� Heckley et al� �

��� In the latter case� an exact formula is obtained when
the observation error density is related to the Gaussian density in a known way�

��� Nonlinear observation operators

In order to describe the nature of the approximation usually made in this case� �rst we
rewrite the general result ������� By the de�nition �A�
� of conditional probability densities�
we may write

p
�
wt

k

��Wo
k��

�
�

p
�
wt

k� Wo
k��

�
p
�Wo

k��

� � �����

and also

p
�
wo

kjwt
k� Wo

k��

�
p
�
wt

k� Wo
k��

�
� p

�
wo

k � w
t
k� Wo

k��

�
� �����

ThereforeZ
p
�
wo

kjwt
k� Wo

k��

�
p
�
wt

k

��Wo
k��

�
dwt

k � �
p
�Wo

k��

� Z p
�
wo

k� w
t
k� Wo

k��

�
dwt

k

�
p
�
wo

k� Wo
k��

�
p
�Wo

k��

�
� p

�
wo

kjWo
k��

�
� �����

��
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where the second equality follows from de�nition �A��� and the third from �A�
�� Equation
����� allows ������ to be written as

p
�
wt

k

��Wo
k

�
�

p
�
wo

kjwt
k� Wo

k��

�
p
�
wt

k

��Wo
k��

�Z
p
�
wo

kjwt
k� Wo

k��

�
p
�
wt

k

��Wo
k��

�
dwt

k

� �����

here the denominator is just the integral of the numerator with respect to wt
k � From �����

it follows that
R
p
�
wt

k

��Wo
k

�
dwt

k�� as expected�

Now consider the nonlinear observation model

wo � h
�
wt
�
� �o � �����

with

�o � N��� R� � �����

and the time subscript k is omitted for notational convenience� From ������ and from
arguments identical to those leading to ������� we have

p
�
wo

k jwt
k �Wo

k��

�
� �����

p

� jRj� �

� exp
n
��
�

�
wo�h�wt

�
T
R��

�
wo�h�wt

�
o
� �����

We will assume that the prior density p
�
wt

k

��Wo
k��

�
in ����� is Gaussian� and therefore given

by ������� although it should be kept in mind that this is already an approximation since
the state wt

k conditioned on observations obtained nonlinearly from past states will not
generally be Gaussian�

From ����� and ������ it follows that the numerator N in ����� can be written as

N � c exp��J� � ���	�

where

c � �����
p

� �����
n
� jRj� �

�

��Pf
��� �

� � ���
�

and

J � J
�
wt
� � �

�

�
wt�wf

�T�
Pf
����

wt�wf
�
�

�

�

�
wo � h

�
wt
�
T

R��
�
wo � h

�
wt
�

�

������

Thus we may write ����� as

p
�
wt

k

��Wo
k

�
�

exp
��J�wt

k

�
Z
exp

��J�wt
k

�

dwt

k

� ������

The di�culty in evaluating p
�
wt

k

��Wo
k

�
� and therefore its mean and covariance� lies �rst

in evaluating the integral in ������� While we have already seen that this is straightforward

��
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in the linear case� it is not trivial in case the observation operator h is nonlinear� It may be
possible to evaluate this integral analytically for some simple nonlinearities� For realistic
Earth Science applications� though� only methods such as Monte Carlo integration would
appear to be feasible� although still expensive� since this is an n�dimensional integral�
Additional integrations would be required to calculate the �rst two moments of p

�
wt

k

��Wo
k

�
�

However� one approximation has already been made� namely that p
�
wt

k

��Wo
k��

�
is Gaussian�

so further approximations not �worse� than this one should be useful�

One approach would be to approximate just the mean and covariance of the density
p
�
wo

kjWo
k��

�
that the integral in ����� represents� For example� from ����� we have to �rst

order that �
wo

kjWo
k��

�
�

�
h
�
wt

k

���Wo
k��

� �� h
	�
wt

k

��Wo
k��

�

� h

	
w

f
k



� ������

In carrying out such an approach� one would still have to arrive at a density for p
�
wo

kjWo
k��

�
�

which would not be Gaussian� such that the quotient in ����� would integrate to unity� A
di�erent approach� the most common one� is described next�

Since the denominator of ������ is simply a normalizing constant� independent ofwt
k� and

the numerator is readily available in ������� it is straightforward to calculate the maximum
of ������ with respect to wt

k� that is� the mode of the conditional density p
�
wt

k

��Wo
k

�
� This

is the analysis step of the locally iterated extended Kalman �lter �Jazwinski �
��� x 
����
to approximate the mean of p

�
wt

k

��Wo
k

�
by its mode�

wa
k
�� m

�
wt

k

��Wo
k

�
� ������

see the discussion in the last paragraph of x ��� for notation� This analysis is biased� unless
by chance it happens thatm

�
wt

k

��Wo
k

�
�
�
wt

k

��Wo
k

��wa
k� see ������ ������ and de�nition ������

The mode may not be unique�

From ������ it follows that maxima of p
�
wt

k

��Wo
k

�
coincide with minima of J

�
wt

k

�
de�ned

in ������� The gradient vector �J�w���w is obtained by di�erentiating �������

�J�w�
�w

�
�
Pf
����

w �wf
�
� HT�w�R��

�
h�w��wo



� ������

where

H�w� � �h�w�
�w

������

is the tangent linear forward observation operator� The variational methods now gaining
widespread use �e�g�� Parrish and Derber �

�� Heckley et al� �

�� generally solve for a
minimum �denoted by wa hereafter� of J�w�� namely a vector wa such that �J�w���w��
at w�wa� by employing ������ in a gradient descent method �e�g�� Navon and Legler �
	���
The method most commonly seen in the estimation theory literature is the following quasi�
Newton method� which relies explicitly on the form of J�w� given by ������� This method
circumvents the need for choosing a step size� which is sometimes a source of di�culty in
descent methods�

��
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By di�erentiating ������ one �nds that the �i� j�th element of the Hessian matrix
� �J�w���w� is given byh

� �J
�w�

i
ij

�
h�
Pf

���
�HT�w�R��H�w�

i
ij
�
n
HjT�w�R��

�
h�w��wo


o
i
� ������

where the matrices Hj�w�� j��� �� � � � � n are de�ned by

Hj�w� � �H�w�
�wj

� ������

these latter matrices vanish in case h�w� is linear or a�ne� since then H de�ned in ������
is independent of w� Newton�s method for minimizing J�w� is the iteration

w��� � w� �
�
� �J�w��
�w�

�

���
�J�w��
�w�

� � � �� �� �� � � � � ����	�

with w��w
f for instance� This iteration converges quadratically to a �local� minimum if

the Hessian matrix is positive de�nite� There may be multiple minima of course� which
would be the case if p

�
wt

k

��Wo
k

�
is multimodal�

The quasi�Newton method is obtained by neglecting the second term in ������� which we
have seen to arise only from nonlinearity� while retaining the �rst term� which is present even
for linear observation operators� This leads to a signi�cant computational simpli�cation as
well as an easily veri�ed convergence criterion� Thus we write

� �J
�w�

�� �
Pf
���

�HT�w�R��H�w� � ����
�

and substitute this expression into the iteration ����	�� This approximate Hessian is positive

de�nite if� for example�
�
Pf

���
is positive de�nite� so convergence is easy to guarantee�

although it may be less than quadratic since the Hessian has been approximated�

Now for notational convenience� de�ne

H� � H�w�� � ������

K� � PfHT
�

�
H�P

fHT
� �R

���
� ������

Then from �����������	� and ����
� we have

� �J
�w�

�� �
�I�K�H��P

f

��

� ������

Substituting this result into ����	� and using ������ gives the iteration

w��� � w� � �I�K�H��
n
w� �wf � PfHT

� R
��
�
h�w���wo


o
� ������

or� in view of ������ and ����
��

w��� � w� � �I�K�H��
�
wf �w�

�
� K�

�
wo � h�w��



� ������

��
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Since this requires two linear system solves per iteration� that is� two operations with the
gain matrix K� de�ned in ������� we regroup terms in ������ to obtain �nally the quasi�
Newton iteration

w��� � wf � K�

�
wo � h�w�� �H�

�
w� �wf

�

� ������

requiring only one linear system solve per iteration� That is� according to ������ one �rst
solves �

H�P
fHT

� �R
�
x� � wo � h�w�� �H�

�
w� �wf

�
� ������

and then sets

w��� � wf � PfHT
� x� � ������

at convergence �w���
��w��w��� one sets

wa � w� � ����	�

Observe that for linear observation operators� ������ reduces to the �non�iterative� Kalman
�lter analysis update equation ������ upon re�introducing the time index k� Equations
������� ������ represent a simple nonlinear extension of the Physical�space Statistical Anal

ysis System under development at the NASA�Goddard Data Assimilation O�ce �da Silva
et al� �

���

We note that ������ may also be viewed as a simple Picard iteration for minimizing J �
i�e�� for solving the nonlinear equation

�J
�w

� � � ����
�

According to ������� this equation can be written ash�
Pf
���

�HT�w�R��H�w�
i
w �

�
Pf

���
wf � HT�w�R��

�
H�w�w � h�w� �wo



�

������

leading to the iterationh�
Pf

���
�HT

� R
��H�

i
w��� �

�
Pf
���

wf � HT
� R

��
�
H�w� � h�w�� �wo



� ������

De�ning

P��
�

� �
Pf
���

� HT
� R

��H� � ������

this iteration may be written as

w��� � P�

�
Pf
���
wf � P�H

T
� R

��
�
H�w� � h�w�� �wo



� ������

From ������� ������ and ������� equation ������ may be written as

P� � �I�K�H��P
f � ������

��
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and with ����
� allows ������ to be written as

w��� � �I�K�H��w
f � K�

�
H�w� � h�w�� �wo



� ������

from which the iteration ������ follows�

It remains to �nd an approximate expression for the analysis error covariance matrix
Pa� By analogy with the linear case� it is tempting to consider P� de�ned in ������ as an

approximate error covariance matrix for the �th iterate w��
�� and therefore to consider

P� � �I�K�H��Pf ������

as an approximate analysis error covariance matrix at convergence� Note from ������ and
������ that this P� is identical to the inverse of the approximate Hessian matrix of ����
�
at convergence� We will see that P� de�ned in ������ does indeed give Pa to within a
tangent linear approximation� see also Rabier and Courtier ��

�� Appendix B��

To see this� linearize the observation model ����� about the �th iterate w��

wo �� h�w�� �H�

�
wt �w�

�
� �o � ������

where H� was de�ned in ������ and ������� Regrouping terms� rewrite ������ as

wo �� H�w
t �

�
h�w���H�w� � �o



� ����	�

Comparing ������ with ����	�� it is seen that w��� in ������ is precisely the analysis vector
one would obtain from the �linear� Kalman �lter upon considering the term h�w���H�w�

in ����	� as an observation error bias� assumed uncorrelated with wt� The matrix P� de�ned
in ������� by comparison with ������� is therefore indeed the error covariance matrix

Pa
k�� �

D�
wt

k �wk��

��
wt

k �wk��

�T ���Wo
k

E
����
�

for the linearized observation model ����	�� and P� de�ned in ������ is the corresponding
error covariance matrix for the �converged� linearized observation model

wo �� H�w
t �

�
h�w���H�w� � �o



� H�wa�wt �

�
h�wa��H�wa�wa � �o



� ������

To summarize� the locally iterated extended Kalman �lter proceeds at observation times
tk as follows� First� assume the prior density p

�
wt

k

��Wo
k��

�
is Gaussian� Then calculate the

mode of the density p
�
wt

k

��Wo
k

�
by carrying ������ or an equivalent iteration to convergence�

denoting the result by wk��� Approximate the conditional mean wa
k by setting wa

k�wk���
Finally� approximate the observation model by

wo
k � Hk�w

a
k�w

t
k �

�
hk�w

a
k��Hk�w

a
k�w

a
k � �o



� ������

��This P� need not be calculated since it does not appear in ������
 nor in �����������
��

��
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assume that hk�w
a
k��Hk�w

a
k�w

a
k is not correlated withwt

k� and thereby calculate Pa
k de�ned

in ����� by the standard update equation ������� in which Hk�Hk�w
a
k� is now de�ned in

������ and Kk�Kk�w
a
k� is now de�ned by

Kk � P
f

k
HT

k�w
a
k�
h
Hk�w

a
k�P

f

k
HT

k�w
a
k� � Rk

i��
� ������

Note that� unlike the linear case� in the nonlinear case Pa
k depends upon the observations

themselves� through dependence upon wa
k� The forecast step ���	�� ������ proceeds as usual�

The approximate analysis update described here has not yet been tested fully for large�
scale Earth Science data assimilation problems� and the extent to which the approximations
involved are reasonable is not yet known� From a theoretical point of view� approximation
of the conditional mean by a conditional mode seems less than ideal� Furthermore� non

linear observation operators arise mainly from remote�sensing devices� whose observations
�e�g�� radiances� often contain much redundant information �Joiner and da Silva �

��� Thus
from a practical viewpoint also� the computational expense of three�dimensional analysis
iterations may sometimes not be warranted by the data themselves� For both of these rea

sons� research directed toward the assimilation of retrieved remotely�sensed data products
which are related linearly to state variables has begun recently �Joiner and da Silva �

���
following the retrieval error analysis of Rodgers ��

���

��� Lognormal observation errors

We have seen that in the estimation�theoretic approach to data assimilation problems� a
stochastic�dynamic model� a stochastic observation model� and explicit assumptions on the
nature of the probability densities involved in these models form the essential ingredients of
the problem statement� Actual algorithms� often necessarily approximate� only ensue once
the stochastic problem is formulated completely�

So far we have only considered Gaussian errors� and cited the BLUE property of the
Kalman �lter in case the only knowledge at one�s disposal is the �rst two moments of the
errors� Additional information is sometimes available� however� and if so it can and should
be used� For example� R� M�enard �personal communication� has recently obtained evidence
that measurement �retrieval� errors for the mixing ratio of several atmospheric trace con

stituents observed from limb sounders on board the Upper Atmosphere Research Satellite
�UARS� tend to be lognormally distributed� rather than normally �Gaussian� distributed�yy

In addition there is evidence that forecast mixing ratio errors from a transport model de

signed to assimilate trace constituent data �M�enard et al� �

�� Lyster et al� �

�� also
tend to be lognormally distributed� In fact the lognormal distribution arises quite naturally
for the concentration of trace constituents themselves� according to the theory of successive
random dilutions �Ott �

�� Chapters 	� 
�� Here we show very brie�y how the standard
Kalman �lter analysis equations can be modi�ed to accommodate lognormally�distributed
errors� Similar arguments can be used to develop analysis equations for other densities that

yySee Appendix B for relationships between the �rst two moments of the normal and lognormal densities�

�	
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are related to the Gaussian density� For more general densities� one may revert back to the
general result �������

First we remark that strictly nonnegative quantities� such as salinity� temperature�
wind speed� and mixing ratio of water vapor or other atmospheric constituents� as well
as remotely�sensed radiance measurements� and therefore errors in these quantities� cannot
be strictly Gaussian�distributed �although they may be approximately so�� since the Gaus

sian density assigns positive probability to negative values of these quantities� As a result�
observation models such as ����� or ����� may not be appropriate under the usual assump

tion of Gaussian measurement error �o� For example� if wt is a vector of mixing ratios then
each element of wt must be nonnegative� while if �o is assumed Gaussian then according
to the model ����� there is a nonzero probability of recording a negative observation� even
though the actual observations are all nonnegative�

A simple example illustrates how this mismatch between model and reality can result

in negative �and therefore incorrect� analyses� Consider a forecast vector wf�
h
wf
� � w

f
�

iT
of dimension n��� with wf

��� and wf
���� having error covariance matrix

Pf �

�
a �

p
ab

�
p
ab b

�
� ������

with a��� b��� and j�j	�� Suppose there is a direct observation wo
� of wt

� according to
������ so that H�!� �"� and let R�r��� From ������ and ������ one obtains

wa
� � �

a � r

	
rwf

�
� awo

�



� ������

so that wa
��� if wo

���� while

wa
� � wf

� � �
p
ab

a� r

	
wo
� � wf

�



� ������

so it can happen that wa
�	� if

�
	
wo
� � wf

�



	 � � ������

If wf
���� then the simple condition ������ alone results in a negative analysis wa

�	�� If

wf
���� then wa

�	� is obtained if either

�q
a
b
� rp

ab

�
wf
�

wf
� � wo

�

� � � ������

or

�q
a
b
� rp

ab

	
wf
�

wf
� � wo

�

	 � � ����	�

�
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Thus a negative analysis occurs for su�ciently small

����� wf
�

wf
�
� wo

�

������ su�ciently small ratios a�b

and r��ab� and su�ciently large j�j�

For nonnegative �elds such as mixing ratios� then� in place of the observation model
������ let us model the observations wo according to

logwo � H logwt � log �o � ����
�

where the logarithm is applied componentwise to the vector elements� we assume the ele

ments of wt and �o are nonnegative� and we omit the time index k� This observation model
assumes the observations are also nonnegative since

wo � exp
�
H logwt � log �o

�
� ������

In fact� de�ning the logarithmically interpolated state zt by

log zt � H logwt � ������

����
� is equivalent to

wo
j � 
oj z

t
j � j � �� �� � � � � p � ������

so that 
oj is just the relative error of the jth observation�

Assuming that �o and zt are independent and that the observations are not biased� from
������ it follows that D


oj

E
� � � j � �� �� � � � � p � ������

Now assume that the density p��o� is lognormal� so that p�log �o� is normal� and denote the
covariance matrix of �o by R�

Rij �
D
�
oi � ��

	

oj � �


E
� ������

From �B�	� and �B�
� we then have

log �o � N�bo� Bo� � ������

where

Bo
ij � log �� �Rij� � log

D

oi 


o
j

E
� ������

and

boj � ��
�B

o
jj � log

�	

oj


��� �

�

� ������

Equations ������������� complete the de�nition of the observation model ����
��

��
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Now take vt� logwt as the state vector and assume the prior density p
�
wt

k

��Wo
k��

�
to

be lognormal� so that the density p
�
vtk
��Wo

k��

�
is normal with mean and covariance matrix

denoted by vf
k
and Bf

k
respectively� From ����
� and ������ it is seen that we are now in

the standard Kalman �lter analysis situation� with �observations� logwo and �observation�
error bias bo� From ����	�� ������ and ������� the optimal �minimum variance� conditional
mean� analysis update equations follow�

va � vf � K
�
logwo �Hvf � bo

�
� ����	�

K � Bf HT
�
HBfHT �Bo

���
� ����
�

Ba � �I�KH�Bf � ������

The optimal analysis wa of wt itself can be recovered using �B����

wa
j � exp

	
vaj �

�
�B

a
jj



� ������

it is clear that each wa
j ��� The corresponding analysis error covariance is given� if desired�

by �B����

P a
ij � wa

iw
a
j

	
e
Ba
ij � �



� ������

As was the case for nonlinear observation operators� Pa depends on the observations them

selves� through dependence on wa� The forecast equations may proceed either from the
pair �wa� Pa� or� perhaps preferably� directly from �va� Ba�� if the dynamics are based on
the evolution equations for vt rather than wt�


 A simple illustrative example

��� Introduction

In the previous section it was seen that the probabilistic assumptions made in formulating
the observation model are critical in determining the appropriate analysis update equations�
and hence the analysis itself� In x � it was argued that the representativeness error term in
the observation model may sometimes play an especially important role�

In this section we give a very simple example of an estimation problem arising from
continuum dynamics� in which representativeness error can be treated exactly and the exact
optimal �conditional mean� state estimate on a well�de�ned �nite�dimensional function
space Bn can actually be calculated� While this example is purposely contrived to make
exact treatment possible� the intention is to describe a conceptual framework that may help
guide the development of approximate estimation algorithms for more realistic problems�
For instance� in this framework we will see that �climatology�� de�ned appropriately� plays
a central role in the treatment of representativeness error�

The point�of�view will be to de�ne �rst the space Bn on which the estimation problem
is to be solved� and only after doing so to develop an appropriate discretization of the

��
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dynamics� Until now we have �rst assumed the existence of a discrete model� and then
de�ned the discrete estimation problem� this led to model error and representativeness
error� In the simple example given here we will see that by de�ning Bn �rst and only
then discretizing� there will be no model error at all� and the representativeness error can
be accounted for exactly� We begin by stating the continuum problem� including all of
our assumptions� Afterwards� we will extract and solve an appropriate �nite�dimensional
problem�

��� The continuum problem

Suppose the state w�w�x� t� is governed by the one�dimensional scalar advection equation

�w
�t

� u�w
�x

� � � �����

with constant advection speed u �known and deterministic�� periodic boundary conditions
on !�� ��"�

w���� t� � w��� t� � t � t� � �����

and real� unknown initial condition w�x� t���w��x� which is considered to be random� For
notational simplicity we take w��x� to be a random �eld de�ned over all of IR� not just for
x� !�� ��"� Then by the solution of ������ ������ we mean the random �eld

w�x� t� � w�

	
x� u�t � t��



� t � t� � �����

provided that

w��x � ��� � w��x� for all x � IR � �����

Since w��x� is a random �eld� condition ����� needs to be interpreted in a probabilistic
sense� which we will do in Assumption ��� below� We assume �rst that w��x� has �nite
second moments� so that the mean function

bw��x� � �
w��x�

�
� �����

the covariance function

W��x�� x�� �
D�

w��x��� bw��x��

�
w��x��� bw��x��


E
� �����

and the uncentered covariance function

Y��x�� x�� � �
w��x��w��x��

�
� �����

all exist� We will make the following four additional assumptions on the random initial
�eld w��x�� which in light of the simple form of the solution ����� will ultimately serve to
de�ne the function space B in which the random �eld w�x� t� is sought� The �rst of these
is somewhat technical� and therefore will be discussed in detail�

��
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Assumption ��� There exist positive constants � and � independent of x such thatD�
w��x� h�� w��x�


�E
	 �h� ���	�

for all h	� and all x� IR�

This assumption can be veri�ed directly for a given Y��x�� x�� since the left side of
���	� evaluates to Y��x� h� x� h���Y��x� h� x��Y��x� x�� Thus the assumption implies
existence of the second derivative ��Y��x�� x����x��x� at all diagonal points x��x�� and
therefore existence of this second derivative on all of IR�IR �cf� Jazwinski �
��� p� ��� Corol

lary ��� which is tacit� for instance� in the usual derivation of wind�wind covariance func

tions from height�height covariance functions for geostrophically�related height and wind
errors on the sphere �cf� Daley �

�� x ����� Existence of this �deterministic� derivative
in turn implies existence of the �random� derivative �w��x���x in the mean�square sense
�cf� Jazwinski �
��� Theorem ����� which is the sense in which the derivatives in ����� are
to be interpreted� and also implies that the operations of expectation and di�erentiation
commute �cf� Jazwinski �
��� Theorem ����� The latter property is used in the derivation
of the continuum Kalman �lter equations �Appendix C�� Assumption ��� is satis�ed� in
particular� if w��x� is bandlimited� cf� Papoulis ��
	�� p� �����

Assumption ��� implies that the random �eld w��x� is almost surely sample continuous
on IR �Lo#eve �
��� p� ����� a fact that will be important in de�ning observations of the state
w�x� t� later in this subsection� This means that all realizations of w��x� are continuous
functions on IR� except for a set of realizations of probability zero independent of x� a strong
notion of continuity� Existence of ��Y��x�� x����x��x� only implies almost sure continuity
of w��x�� referred to in the literature also as continuity with probability �� which means that
realizations are continuous at any given point x with probability �� Lo#eve ��
��� p� ����
discusses the distinction between the concept of almost sure sample continuity and the
weaker concept of almost sure continuity�

In place of Assumption ��� one might consider a still weaker assumption such as mean�
square continuity of w��x��

lim
h��

D�
w��x� h�� w��x�


�E
� � for all x � IR � ���
�

which is equivalent to continuity of Y��x�� x�� at each diagonal point x��x� �cf� Jazwinski
�
��� Theorem ���� Papoulis �
	�� p� ����� Realizations of mean�square continuous ran

dom �elds� however� can be extremely irregular and often display fractal characteristics
�cf� Tarantola �
	�� Example ����� although they are always regular enough to be inte

grable over �nite intervals �Lo#eve �
��� p� ����� While such �elds describe a variety of
natural phenomena� we employ Assumption ��� instead� which� as we will see later� renders
point observations of w�x� t� meaningful�

Assumption ��� There exist positive constants 
 and � independent of x such thatD�
w��x� �� � h�� w��x�


�E
	 
h� ������

for all h	� and all x� IR�

��
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This assumption implies almost sure sample ���periodicity of the random �eld w��x��
this is the sense in which ����� is meant in our example� In other words� all realizations of
w��x� satisfy ������ except for a set of realizations of probability zero independent of x� A
weaker �and more frequently encountered� sense� implied by Assumption ���� ismean�square
���periodicity� D�

w��x � ���� w��x�

�E

� � for all x � IR � ������

cf� Papoulis ��
	�� p� �����

Assumption ��� The random �eld w��x� is Gaussian� that is� for each positive integer
m and each set of points x�� x�� � � � � xm in IR� the random variables w��x��� w��x��� � � � �
w��xm� are jointly Gaussian�

It follows from ����� that in fact the solution w�x� t� is Gaussian for all time t� t��

Assumption ��
 The random �eld w��x� is homogeneous �wide�sense stationary when
viewed as a stochastic process rather than as a random �eld	� That is� the mean functionbw��x� in ����� is actually a constant c�

bw��x� � �
w��x�

�
� c � ������

and the covariance function W��x�� x�� in ����� is a function C of x��x� alone�

W��x�� x�� � C�x� � x�� � ������

The constant c and the function C�x� � x�� are assumed known�

From de�nition ����� it follows that C�x��x���C�x��x���C�jx��x�j�� C�x� is an
even function� In other words� w��x� is also isotropic� which is the case for all homogeneous
random �elds in one dimension�

Now� from ����� and ������ it follows that the unconditional mean

bw�x� t� � �
w�x� t�

�
������

is a constant for all time t� t��

bw�x� t� �
D
w�

	
x� u�t� t��


E
� c � ������

From ������ ����� and ������ it follows that the unconditional covariance function

W �x�� x�� t� �
D�

w�x�� t�� bw�x�� t�
�w�x�� t�� bw�x�� t�
E ������

��
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is also constant in time and depends only on x��x��

W �x�� x�� t� � W�

	
x� � u�t� t��� x� � u�t � t��



� C

	�
x� � u�t� t��


� �
x� � u�t� t��




� C�x� � x�� � ������

Therefore w�x� t� is a homogeneous Gaussian random �eld for all time t� t�� with un

conditional mean c and unconditional covariance function C�x� � x�� which are both inde

pendent of time� Since these statistics are independent of time� we will refer to c as the
climatological mean and to C�x� � x�� as the climatological covariance function� Thus the
notion of climatology in this example di�ers from the conventional one� our usage refers
directly to ensemble statistics rather than time�average statistics� and does not require
ergodicity�

Replacing x in ���	� by x� u�t� t��� it follows from ����� thatD�
w�x� h� t�� w�x� t�


�E
	 �h� � ����	�

for all h	�� all x� IR� and all t� t�� Similarly� from ����� and ������ it follows thatD�
w�x� �� � h� t�� w�x� t�


�E
	 
h� � ����
�

for all h	�� all x� IR� and all t� t�� Thus the function space B is de�ned to consist of all
homogeneous Gaussian random �elds w�x� t� having mean c� covariance function C�x� � x���
and satisfying ����	� and ����
�� These random �elds are almost surely sample continuous�
���periodic functions on IR� In particular� B includes the realizations of such �elds�

Now suppose that noisy linear observations of w�x� t� are available at discrete instants
of time tk for k��� �� �� � � � �

wo
k � Hk w�� � tk� � �mk � ������

Here wo
k is a pk�vector as usual� Hk denotes a known� deterministic pk�vector�valued

bounded linear operator on B acting on the fundamental interval !�� ��"� and we will assume
that the measurement error �mk is a Gaussian pk�vector uncorrelated with w��x���	

�mk � h�mk i


w��x�

�
� � � ������

for all k and for all x� IR� From ����� and ������ it follows that �mk is not correlated with
the state w�x� tk�� nor with the signalHk w�� � tk�� The signal is a Gaussian�distributed pk�
vector since it is a linear operation on the state� which is Gaussian �cf� Lo#eve �
��� p� �	���
We also assume that the measurement error bias�

b�mk � h�mk i � ������

��
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and the measurement error covariance matrix�

Rk �
D
��mk � b�mk ���mk � b�mk �TE � ������

are both known� Finally� we assume that the measurement error is white in time�

Let us write the �th element of the vector observation equation ������ as

�wo
k�� � �sk�� � ��mk �� � ������

where sk�Hk w�� � tk� is the signal� What we actually observe is a realization of the random
�eld w�x� tk�� It followed from Assumption ��� that almost all realizations are continuous
functions� in a very strict sense� We de�ne Hk only for the continuous realizations� We
have also stipulated that Hk should be a bounded linear operator on B �acting on the
fundamental interval !�� ��"�� a physically natural requirement which means for continuous
functions w�x� tk� on !�� ��" that

j�sk��j � Mk�� max
��x���

jw�x� tk�j � ������

for some constants Mk�� independent of w�x� tk�� It follows that a large classzz of signals
can be represented as

�sk�� �

Z ��

�

w�x� tk�fk��x�dx � ������

where the functions fk��x� are any integrable functions on !�� ��"� since then we can take

Mk�� �

Z ��

�

jfk��x�jdx � ������

In particular� point observations are permissible� in this case

�sk�� � w�x�� tk� � ����	�

x� for ���� �� � � � � pk denoting observation points at time tk� which is obtained by setting
fk��x����x� x�� in ������� � denoting the Dirac ��function� for which Mk���� in ��������

see also Papoulis ��
	�� pp� �������� �����	��� More generally� the weighting functions
fk��x� can be considered as aperture functions �cf� Daley �

�� or averaging kernels �Backus
and Gilbert �
���� and in this example are assumed known� inasmuch as Hk is assumed
known�

zzThe entire class is described by the Riesz representation theorem for continuous functions �e�g�
 Royden
����
 p� �����

�Had we assumed only mean�square continuity ����� of w��x� rather than Assumption ���
 then the
most we could conclude about integrability of w�x� tk� is almost sure sample square�integrability �Lo�eve
����
 p� ����
 i�e�
 that almost all realizations lie in the space L���� ��� of square�integrable functions on
��� ���� The Riesz representation theorem for Lp spaces �e�g�
 Royden ����
 p� ���� would then imply that
the functions fk��x� must also lie in L���� ���
 thus precluding point observations since the Dirac ��function
is not square�integrable� In other words
 point observations would tell us nothing about the realization of
w�x� tk� in this case�

��
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Under the stated assumptions� the conditional mean forecasts and analyses at times
tk � and their corresponding conditional covariance functions� are given �exactly� by the
continuum version of the Kalman �lter �see Appendix C�� These are de�ned by

wf

k
�x� �

D
w�x� tk�

���Wo
k��

E
� ����
�

wa
k�x� �

D
w�x� tk�

���Wo
k

E
� ������

P f

k
�x�� x�� �

�h
w�x�� tk�� wf

k
�x��

ih
w�x�� tk�� wf

k
�x��

i����Wo
k��

�
� ������

P a
k �x�� x�� �

�h
w�x�� tk�� wa

k�x��
ih
w�x�� tk�� wa

k�x��
i����Wo

k

�
� ������

At time t� we have

wa
��x� �

�
w��x�

�
� c � ������

P a
� �x�� x�� � W��x�� x�� � C�x� � x�� � ������

At times tk�t�� w
f

k
�x� and P f

k
�x�� x�� are given by the solutions bw�x� tk� and P �x�� x�� tk��

respectively� of the di�erential equations

�bw
�t

� u�bw
�x

� � � ������

�P
�t

� u �P
�x�

� u �P
�x�

� � � ������

with initial conditions

bw�x� tk��� � wa
k���x� � ������

P �x�� x�� tk��� � P a
k���x�� x�� � ����	�

thus we have simply

wf

k�x� � wa
k��

	
x� u�tk � tk���



� ����
�

P f

k
�x�� x�� � P a

k��

	
x� � u�tk � tk���� x� � u�tk � tk���



� ������

For the analysis update we have

wa
k�x� � wf

k
�x� �Kk�x�

	
wo

k �Hkw
f

k
� b�mk 
 � ������

Here the innovation vector wo
k �Hkw

f

k
� b�mk is a �column� pk�vector as usual� and the gain

Kk�x� is the �row� pk�vector function of x de�ned by

Kk�x� �
h
H�kP

f

k
�x � ��

iT�
H�k

h
H�kP

f

k
�� � ��

iT
�Rk

���
� ������

where H�kP
f
k �� � �� denotes the �column� pk�vector function of x� obtained by acting with

Hk on the x� variable of P f
k �x�� x�� and H�k denotes the action of Hk on the x� variable�

��
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the innovation covariance �in braces� to be inverted is a pk � pk matrix as usual� and the

x�dependence of Kk�x� arises solely from the factor
h
H�kP

f

k
�x � ��

iT
� Finally� the analysis

error covariance function P a
k is given by

P a
k �x�� x�� � P f

k
�x�� x���Kk�x��H�kP

f

k
�� � x�� � ������

The update equations ������� ������� ������ appear in Appendix C in a slightly di�erent
notation as equations �C����� �C����� �C���� for the more general case of a vector state in
several space variables�

Equations ����
��������� with initial conditions ������� ������� constitute the complete
solution of the continuum �ltering problem we have posed� Even for this very simple
problem� however� for general Hk they cannot be solved exactly on a computer� because
the analysis update equations ������������� require access to P f

k as a function� Rather
than propose an approximate means of solving these �lter equations� we now extract from
the continuum �ltering problem one which can in fact be solved exactly on a computer�
We remark here that the solution of the continuum �ltering problem did not require the
homogeneity Assumption ���� the initial conditions ������ and ������ need only be the
�unconditional� mean

�
w��x�

�
and covariance W��x�� x�� of w�x� t��� whatever they may

be� The new �ltering problem will make explicit use of the homogeneity assumption on the
initial �eld�

��� A 	nite
dimensional problem

By Assumption ���� the random �eld w��x� is mean�square di�erentiable� therefore mean�
square continuous� and therefore mean�square integrable� cf� Jazwinski ��
��� x ����� It
follows that we can de�ne the random Fourier coe�cients

aj � �

��

Z
��

�

h
w��x��

�
w��x�

�i
e�ijxdx � ������

These are Gaussian random variables in light of Assumption ��� �cf� Lo#eve �
��� p� �	��� a�
is real and a�j�$aj since w��x� is real� Since the operations of expectation and mean�square
integration commute �cf� Jazwinski �
��� Theorem ��	�� it follows from ������ that

haji � � for all j � ������

Further� the homogeneity Assumption ��� implies that

hai$aji � � for i �� j � ������

while �jaj j�� �
�

��

Z ��

�

C�x�e�ijxdx for all j � ������

�	
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In other words� the variances
�jaj j�� are just the Fourier coe�cients of the function C�x�

de�ned by ����� and �������

C�x� �
�X

j���

�jaj j��eijx � ����	�

where the convergence is pointwise and uniform in x�y We saw earlier that C�x� is an even
function� C��x��C�x�� which follows also from ����	� since a�j�$aj � Thus the expansion
����	� can be rewritten as

C�x� �
�
�a��

�
�
� �

�X
j��

�jaj j�� cos �jx� � ����
�

Similarly� according to ������ and ������� the Gaussian random variables aj themselves
are the Fourier coe�cients of the random �eld w��x��

�
w��x�

�
� w��x�� c�

w��x� � c�
�X

j���

aje
ijx � ������

where the convergence is both mean�square and almost sure �cf� Lo#eve �
��� pp� �	���	��
Papoulis �
	�� pp� �������� Yaglom �
	�� x ���� Example ��� In view of ����� we have also

w�x� t� � c�
�X

j���

aje
ij!x� u�t � t��" � ������

This simple expansion gives rise naturally to a �nite�dimensional �ltering problem� as fol

lows�

Suppose we are interested only in a �large�scale� analysis of w�x� t�� which we will
de�ne to be the conditional mean of the �rst N�� waves in the expansion ������ of w�x� t��
Thus let % denote the operator from B to Bn� n��N � �� de�ned for random �elds w��x�
satisfying Assumptions ��� to ��� by the truncated random Fourier series

%w��x� � c�
NX

j��N

aje
ijx � ������

% is a projection operator�

%� � % � ������

Then the large�scale �eld w��x� t� is de�ned to be

w��x� t� � %w�x� t� � c�
NX

j��N

aje
ij!x� u�t� t��" � ������

yC�x� is twice�di�erentiable according to Assumption ���
 in particular the �rst derivative dC�x��dx is
continuous
 and it follows from ������ and ������ that C�x� is ���periodic� Standard results from Fourier
analysis imply pointwise and uniform convergence in this case�

�
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the latter equality following from ������� w��wt in the notation of the previous sections�
The small�scale �eld ws�x� t� is then

ws�x� t� � �I� %�w�x� t� �
X
jjj�N

aje
ij!x� u�t � t��" � ������

so that

w�x� t� � w��x� t� � ws�x� t� � ������

The estimation problem will be to calculate the large�scale forecasts and analyses�

w�f

k
�x� �

D
w��x� tk�

���Wo
k��

E
� ������

w�a
k �x� �

D
w��x� tk�

���Wo
k

E
� ����	�

along with the corresponding error covariances

P �f

k
�x�� x�� �

�h
w��x�� tk�� w�f

k
�x��

ih
w��x�� tk�� w�f

k
�x��

i����Wo
k��

�
� ����
�

P �a
k �x�� x�� �

�h
w��x�� tk�� w�a

k �x��
ih
w��x�� tk�� w�a

k �x��
i����Wo

k

�
� ������

Before proceeding� observe �rst that

wa
k�x�� w�a

k �x� �
D
ws�x� tk�

���Wo
k

E
� ������

according to ������� ������ and ����	�� a similar relation holds for wf
k�x� � w�f

k �x�� The
conditional expectation on the right side of ������ does not vanish in general� writing a
single aperture function fk��x� as a Fourier series

fk��x� �
�X

m���

bme
imx � ������

the integral in ������ evaluates toZ ��

�

w�x� tk�fk��x�dx � ��
�X

j���

ajb�je
�iju�tk � t�� � ������

Thus the right side of ������ vanishes only if for all the aperture functions bj�� for all
jjj�N � assuming the original �eld w��x� has power at all small scales �

�jaj j�� ��� for all
jjj�N�� cf� ������� In fact� the closer the observations are to point observations� the closer
the spectrum fbjg is to being �at �jbjj�constant�� However� the unconditional expectation
hws�x� tk�i vanishes according to ������ and �������D

ws�x� tk�
E

� � � ������

��
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Small�scale information therefore arises solely from the observations in this simple example�
From ������ and ������ we see that the large�scale analysis w�a

k �x� amounts to discarding
the small�scale information contained in all current and past observations�

To solve the �ltering problem �������������� �rst write the observation equation ������
as

wo
k � Hk w

��� � tk� � �rk � �mk � ������

where the representativeness error �rk is given by

�rk � Hk w
s�� � tk� � ������

and has mean zero according to ������� Since the coe�cients aj are Gaussian�distributed�
as is the measurement error �mk � and since Hk is a linear operator� the large�scale signal
Hk w��� � tk� is still a Gaussian random vector and so is the observation error �ok��rk � �mk �
cf� ������� The large�scale signal� representativeness error and measurement error are also
mutually uncorrelated in view of ������� ������� ������ and ������� Therefore the analysis

update equations ������������� still hold if we replace wf
k � w

a
k � P

f
k and P a

k by w�f
k � w�a

k � P �f
k

and P �a
k � and if we replace the measurement error covariance matrix Rk by the observation

error covariance matrix� Let us now calculate this matrix�

According to ������� ������� ����
� and �������D
ws�x�� t�w

s�x�� t�
E

� �
X
j�N

�jaj j�� cos
�
j�x� � x��



� Cs�x� � x��

� C�x� � x��� C��x� � x�� � ������

Cs�x� � x�� is the small�scale climatological covariance and

C��x� � x�� �
�h

w��x�� t�� c
ih
w��x�� t�� c

i�
�

�
�a��

�
�
� �

NX
j��

�jaj j�� cos�j�x� � x��



����	�

is the large�scale climatological covariance� Note that since we have assumed the function
C�x� � x�� to be known� for example as any of the traditional isotropic covariance models
�cf� Daley �

��� then Cs�x� � x�� can be calculated by use of the latter equalities in ������
and ����	�� Thus the observation error covariance matrix is�	

�rk � �mk � �
�mk
�
	

�rk � �mk � �
�mk
�
T�

�
�
�rk��

r
k�

T
�
�Rk

� H�k

�
H�kC

s�� � ��
T�Rk � ����
�

which is the sum of the representativeness error covariance matrix and the measurement
error covariance matrix� Here the notation is as in �������

��
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The analysis update equations are therefore given by

w�a
k �x� � w�f

k
�x� �K�

k�x�
	
wo

k �Hkw
�f

k
� b�mk 
 � ������

K�
k�x� �

h
H�kP

�f
k �x � ��

iT��H�k

�
H�k

h
P �f
k �� � �� � Cs�� � ��

i�T

�Rk

�A��� ������

P �a
k �x�� x�� � P �f

k
�x�� x���K�

k�x��H�kP
�f

k
�� � x�� � ������

Except for those giving rise to the representativeness error covariance matrix� each of the
integrals represented by Hk� H�k� and H�k in these equations can be evaluated exactly�
they act on functions in the �nite�dimensional space Bn� or Bn�Bn� and by orthogonality
of the basis �sinusoidal� functions� the aperture functions fk��x� in these integrals may be
truncated to their projections %fk��x� in evaluating the integrals� cf� ������� ������� ������
and ������� The integrals involved in calculating the representativeness error covariance
matrix would have to be calculated numerically� to some speci�ed degree of accuracy� The
initial analysis equations� as in ������ and ������� are given by

w�a
� �x� �

D
w��x� t��

E
� c � ������

P �a
� �x�� x�� �

�h
w��x�� t��� c

ih
w��x�� t��� c

i�
� C��x� � x�� � ������

cf� ����	��

It remains to calculate the evolution of the conditional mean and covariance between
observation times� Since the projection operator % commutes with u���x and ���t� from
����� and ������ we �nd that

�w�

�t
� u�w

�

�x
� � � ������

Taking the conditional expectation with respect to Wo
k�� in ������� it follows that w�f

k
�x�

de�ned in ������ is given by the solution bw��x� tk� of the equation

�bw�

�t
� u�bw�

�x
� � � ������

starting from initial condition bw��x� tk����w�a
k���x�� Similarly� P �f

k
�x�� x�� is given by the

solution P ��x�� x�� tk� of the equation

�P �

�t
� u�P

�

�x�
� u�P

�

�x�
� � � ������

starting from initial condition P ��x�� x�� tk����P �a
k���x�� x��� Since the initial conditions

for ������ and ������ lie in the �nite�dimensional spaces Bn and Bn�Bn respectively� these
equations may also be solved exactly� for example by evolving the spectral coe�cients
directly� Thus the �ltering problem ������������� is solved�

We note that in this simple example there is no �aliasing� of the small�scale information
contained in the observations onto the large�scale analyses and forecasts� by de�nition !see

��
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������� ������� ����	�"� these extract only the large�scale information contained in the obser

vations� the small�scale information being simply discarded !see ������ and the discussion
thereafter"� Further� since ws�x� t� lies in BnBn �the complement of Bn in B�� so does the
conditional expectation on the right side of ������� so that

%
D
ws�x� tk�

���Wo
k

E
� � � ����	�

which follows from ������ and ������� Therefore� since %w�a�x� t��w�a�x� t�� operating on
������ with % gives the relation

w�a
k �x� � %wa

k�x� � ����
�

that is� the analyses resulting from the �nite�dimensional algorithm �������������� �������
������ are just the projections onto Bn of those resulting from the in�nite�dimensional

algorithm ����
��������� Similar relations hold for w�f

k
� P �a

k and P �f

k
�

��� Concluding remarks

Let us now summarize the results of this very simple example� and use them to provide a way
of thinking about realistic geophysical data assimilation problems� First of all� we have seen
that by de�ning Bn �rst� and only then developing a discretization� an exact� implementable
�lter algorithm has been designed� This �lter algorithm involves� perhaps surprisingly� no
model error term� Had a di�erent discretization of the dynamics been chosen� i�e�� one
incompatible with the discrete estimation problem imposed by the de�nition of Bn� then
model error would have arisen� Such model error in this simple example could perhaps
be modeled stochastically by considering the leading�order terms in the truncation error
expansion of the chosen discretization� While in principle it appears best to de�ne Bn

�rst� then to de�ne the �nite�dimensional estimation problem to be solved� and only as the
�nal step to develop an appropriate discretization� in the real world this will be a practical
impossibility at least for some time� since large�scale geophysical models take many years
to develop� currently we are usually given a discrete model� then asked to develop a data
assimilation algorithm� For this reason alone� model error is inevitable�

There are many other sources of model error� however� In our simple example� the
absence of model error was due to the invariance of the continuum dynamics under the
action of the projection operator % from B to Bn� If the advection speed had not been con

stant� this invariance would no longer have held� In this case� a di�erent choice of Bn could
perhaps ameliorate model error� For most nonlinear problems� it is unlikely that for any
choice of Bn one could develop a projection operator under which the dynamics would be
invariant� For instance� energy� and enstrophy�cascade processes �cf� Gauthier et al� �

��
Tanguay et al� �

�� would likely lead to model error� this error could possibly be mod

eled stochastically �cf� Leith �

��� Assumptions made from the outset in the governing
continuum dynamics� such as the hydrostatic assumption and the traditional shallowness
approximations �Phillips �
��� in the atmospheric primitive equations also lead to model
error� Finally� stochastic forcing arises from uncertain parameters in physical parameter

izations and boundary conditions� Errors from all these sources will ultimately have to

��
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be modeled� and the models tuned by adaptive procedures such as that suggested by Dee
��

���

Concerning representativeness error� it should be noted that the exact treatment in
our example was enabled by the homogeneity of the random �eld w�x� t�� this property
led to the absence of correlation between the large�scale part of the signal Hkw

� and the
representativeness error Hkw

s� and also to state�independence of the mean and covari

ance matrix of the representativeness error� While geophysical �elds generally do not have
this property� it is sometimes possible to introduce a change of coordinates such that ho

mogeneity or isotropy holds approximately �e�g�� Desroziers and Lafore �

�� Carton and
Hackert �

�� Derber and Rosati �
	
� Vanmarcke �
	�� p� 	��� The �kernel� P �f � Cs in
������ upon which the observation operator Hk acts generally contains power at all spatial
scales� Current�generation global analysis systems for numerical weather prediction also
involve such a kernel �Parrish and Derber �

�� Heckley et al� �

��� but truncate it at
�nite spectral resolution and instead lump the representativeness error covariance matrix
together with the measurement error covariance matrix� Equation ������ suggests that it
may be more natural to sum the forecast error covariance model

�� P �f
�
together with a

small�scale climatological covariance model �� Cs� in accounting for representativeness er

ror� resulting in a covariance model with power at all scales� In principle this is possible by
modeling the sum directly as a covariance function �with power at all scales�� rather than as
a truncated spectral expansion� The Physical�space Statistical Analysis System �da Silva
et al� �

�� is one e�ort being developed along these lines� By the analogy between model
error and representativeness error drawn in x �� it appears that the stochastic forcing �tk in
���
� must also contain power at all scales in general� and therefore should be considered as
a random �eld rather than as a random vector�

In the example it was also seen to be important to evaluate the action of the integrals rep

resented by the observation operators Hk as actual integrals� as opposed to� say� the simple
interpolations carried out in conventional optimal interpolation schemes �e�g�� McPherson
et al� �
�
� Lorenc �
	��� This may be possible in operational practice� but only if the
discrete function space Bn is de�ned precisely� for instance� only if we know precisely what
is meant by the grid�point values of a numerical prediction model� Precise de�nition of Bn

and implementation of integral observation operators is likely to be important for properly
assimilating satellite radiances or retrieved products representing averages over regions of
the spatial domain� and even for �point� observations such as those obtained from most
in situ measurements� Of course� we do not know the aperture functions or averaging ker

nels precisely� Ultimately it may be necessary to parameterize them and to estimate the
parameters during the data assimilation process�

Finally� we reiterate the role of the Gaussian assumptions made here �as well as in
operational data assimilation systems�� along with the independence of the measurement
error from the signal� The Gaussian assumptions lead� as we have seen� to true conditional
mean �minimum variance� estimation procedures if in fact they are correct� Gaussian
assumptions can be checked� at least in part� by monitoring statistics of the observed�minus�
forecast residuals� As demonstrated in x ���� for alternative densities related simply to the
Gaussian density� it is straightforward to modify the estimation algorithm appropriately� by

��
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a change of dependent variable� In the simple example given here� the dynamics are invariant
under the change of variable v�log w� and the analysis algorithm would be trivially modi�ed
as suggested in x ����

Independence of measurement error from the signal depends on the measuring device
itself� For most in situ measurements� the assumption of independence may be justi�ed�
provided the devices are properly calibrated� For retrieved satellite products� a method is
currently being developed by Joiner and da Silva ��

�� in part to ensure this independence�
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Appendix A
Conditional Probability Densities and Expectations

Here we review only those facts about conditional probability densities and expectations that
allow us to give a self�contained proof of the equivalence of conditional mean estimation
and minimum variance estimation� cf� ������ Background material can be found in most
textbooks on probability theory� We make no notational distinction here between a random
variable and its realizations� All integrals de�ned below are assumed to exist�

If z is a random n�vector� its expected value �or mean� or �rst moment� is the vector

hzi whose ith element is de�ned by

hzii �
Z �

��
� � �
Z �

��
�i pz���d�� � � �d�n � �A���

where pz is the probability density function of z� We abbreviate this de�nition of hzi by
the notation

hzi �

Z
� pz���d� � �A���

where the integration is over all of IRn� If f�z� is a deterministic function of z� then we also

��
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have

hf�z�i �

Z
f���pz���d� � �A���

Now denote the �rst m elements of z by the m�vector x� and the remaining n�m
elements by the �n�m��vector y� so that z�

�
xT �yT


T
� The joint probability density

function px�y�x�y� is then de�ned as

px�y�x�y� � pz�z� � �A���

and the marginal densities px�x� and py�y� are de�ned by

px�x� �
Z
px�y�x���d� � �A���

py�y� �
Z
px�y���y�d� � �A���

the former integral being over IRn�m and the latter over IRm� The expected values hxi and
hyi are then given by

hxi �

Z
�px���d� � �A���

hyi �

Z
�py���d� � �A�	�

the former integral being over IRm and the latter over IRn�m� so that hzi�
h
hxiT � hyiT

iT
�

The conditional density of x given y� written pxjy�xjy�� is de�ned as

pxjy�xjy� � px�y�x�y�
py�y�

� �A�
�

by analogy with the usual de�nition of the probability of occurrence of an event A given
the occurrence of an event B�

Pr�AjB� � Pr�A �B�
Pr�B�

� �A����

Note that if x and y are independent� that is� if px�y�x�y��px�x�py�y�� then the intuitive
result pxjy�xjy��px�x� follows from �A�
�� The expected value of x given y� written hxjyi�
is de�ned by

hxjyi �
Z
� pxjy��jy�d� � �A����

and is a function of the random vector y� However� if x and y are independent� by comparing
�A��� and �A���� it follows that hxjyi�hxi�

��
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Now� since hxjyi is a function of y� upon taking the expectation with respect to y it
follows from �A��� that

hhxjyii �

Z
hxj�ipy���d� � �A����

On the other hand� from �A���� �A��� and �A�
� we have

hxi �

Z
�

�Z
pxjy��j��py���d�

�
d� � �A����

Interchanging the order of integration here gives

hxi �

Z �Z
� pxjy��j��d�

�
py���d� � �A����

or� from �A�����

hxi �

Z
hxj�ipy���d� � �A����

Comparing �A���� and �A���� shows that

hhxjyii � hxi � �A����

a fundamental identity we will need�

Another basic identity is thatD
gT�y�x

���yE � gT�y�hxjyi � �A����

if the vector g is a function of y alone� This follows directly from the de�nition �A���� of
conditional expectation�

Now we establish the relationship ������ Denote by �k the conditional mean of the state
wt

k given the observations Wo
� �

�k � �
wt

k

��Wo
�

�
� �A��	�

From �A���� it follows that D
L��k�

E
�

DD
L��k�

���Wo
�

EE
� �A��
�

where L��k� was de�ned in ������ Substituting ����� and ����� into �A��
� yieldsD
L��k�

E
�

DD�
wt

k �we
k

�T
S
�
wt

k �we
k

����Wo
�

EE
� �A����

Adding and subtracting �k in �A���� givesD
L��k�

E
�

��h�
wt

k��k

�
�
�
�k�we

k

�iT
S
h�
wt

k��k

�
�
�
�k�we

k

�i����Wo
�

��
� �A����

��
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Since �k is a function only of Wo
� according to �A��	�� and since the estimate we

k was
assumed to be a function only of the observations Wo

� also� from �A���� we haveD�
�k �we

k

�T
S
�
wt

k � �k

����Wo
�

E
�

�
�k �we

k

�T
S
D�
wt

k � �k

����Wo
�

E
� �A����

But D�
wt

k � �k

����Wo
�

E
� � � �A����

according to de�nition �A��	�� so the expression �A���� vanishes� Therefore we can write
�A���� as

D
L��k�

E
�

DD�
wt

k��k

�T
S
�
wt

k��k

����Wo
�

EE
�
DD�

�k �we
k

�T
S
�
�k �we

k

����Wo
�

EE
� �A����

Using �A���� and de�nition ����� again� this becomesD
L��k�

E
�

D
L
�
wt

k � �k

�E
�
D
L
�
�k �we

k

�E
� �A����

The �rst term on the right side of �A���� is independent of the estimate we
k� The second

term is minimized uniquely �since S was assumed positive de�nite� by the choice ������ that
is� by setting

we
k � �k � �A����

in which case the second term vanishes� Thus� hL��k�i is minimized uniquely by the condi

tional mean �k � and the value of hL��k�i at the minimum is

�
L
�
wt

k � �k

��
�

Appendix B
The Lognormal Distribution

Here we describe the relationships between the �rst two moments of the multivariate normal
�Gaussian� and lognormal probability densities�

Suppose v�Rn is normally distributed with mean hvi and covariance matrix B� de

noted v�N�hvi�B�� If the components wj of a vector w are de�ned by wj�exp�vj� for
j��� �� � � � � n� then w is said to be lognormally distributed� written w�LN�hwi�P�� The
mean vector hwi is given by

hwji � exp
	
hvji� �

�Bjj



� �B���

and the covariance matrix P by

Pjk � hwjihwki
	
eBjk � �



� �B���

�	
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The mean vector and covariance matrix characterize the multivariate lognormal density
completely� as is also the case for the normal density�

To see �B���� recall that the characteristic function �v����
�
exp

�
i�Tv

��
of v is given

by

�v��� � exp
	
i�T hvi � �

��
TB�



� �B���

as shown in many elementary probability texts� Substituting into �B��� the vector ���j

de�ned by �j��i ej � where i�
p�� and ej denotes the jth column of the n�n identity

matrix� gives �B��� immediately� Similarly� substituting ���jk��j � �k into �B��� gives

hwjwki � exp
h
hvji� hvki� �

��Bjj � Bkk � �Bjk�
i
� hwjihwki exp�Bjk� � �B���

so that

Pjk �
�	
wj � hwji


	
wk � hwki


�
� hwjwki � hwjihwki � �B���

from which �B��� follows�

Straightforward algebraic calculations from �B��� and �B��� show that� if we are given
w�LN�hwi�P� and de�ne v�logw �componentwise�� then v�N�hvi�B�� with

hvji � log hwji � �
�Bjj � �B���

and

Bjk � log

�
� �

Pjk
hwjihwki

�
� �B���

In the special case that hwji�� for all j� discussed in x ���� one has simply

hvji � ��
�Bjj � �B�	�

and

Bjk � log �� � Pjk� � �B�
�

in particular hvji�� for each j�

Appendix C
Filtering Theory on the Continuum

While the discrete theory developed in xx ��� had the virtue of keeping the mathematics
fairly simple� it did not allow for an adequate treatment of model error or representative

ness error� In x � it was seen that continuum theory is required to address these issues

�
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fully� and is therefore developed here� In this appendix we carry out no discretization� so
there will be no representativeness error� instead this error is treated in x �� We also do not
consider stochastic forcing of the continuum dynamics� primarily to simplify the mathemat

ical development� see� however� the discussion in x ���� The observations will be supposed
linear� since the main di�culties surrounding the treatment of nonlinear observations were
described already in x ���� The continuum dynamics will be nonlinear� however� so that we
can highlight the role of closure approximations� Such approximations do not arise in the
linear case�

While essentially exact �lters for nonlinear dynamics can be obtained through Monte
Carlo approaches �Evensen �

�� M�enard �

��� here we will invoke the second�moment
closure �third� and higher�moment discard� approximation� The development will be brief
and formal� See Cohn ��

�� and references therein for more detailed discussion of this
approximation� Curtain ��
��� and Omatu and Seinfeld ��
	
� summarize rigorous treat

ments of linear stochastic PDEs in estimation theory� establishing the relationship between
rigorous and formal approaches�

Let the m�vector state w�w�x� t� satisfy a system of m nonlinear PDEs �m�� for
scalar� univariate dynamics��

�w
�t

� f�w� � � � �C���

where f�w��f�w� ���x� denotes an m�vector partial di�erential operator acting on the
spatial variables x of the state w�x� t�� which is assumed to lie in some function space B for
each time t� The �unknown� initial condition w�x� t���w��x��B will be considered to be
a random �eld �e�g�� Yaglom �
	�� Vanmarcke �
	�� with known mean

bw��x� �
D
w��x�

E
� �C���

and known covariance function

W��x��x�� �
�h
w��x��� bw��x��

ih
w��x��� bw��x��

iT�
� �C���

this is an m�m matrix function of two sets of spatial variables x� and x�� and by de�nition
satis�es the symmetry property

WT
� �x��x�� � W��x��x�� � �C���

Now suppose a pk�vector of observations wo
k taken at discrete instants of time tk�

k��� �� �� � � � � is related linearly to the state variables and corrupted by additive noise�

wo
k � Hkw�� � tk� � �mk � �C���

where Hk is a linear operator on the function space B� The pk�vector measurement error
�mk is assumed to be Gaussian� white in time� and independent of the state w�x� tk� and
the initial �eld w��x�� The measurement error bias

b�mk � h�mk i � �C���

��
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a pk�vector� and covariance matrix

Rk �
D
��mk � b�mk ���mk � b�mk �TE � �C���

a pk�pk matrix� are both assumed to be known�

To solve the �ltering problem� �rst we need to develop an equation for the evolution
between times tk�� and tk of the conditional mean

bw � bw�x� t� �
D
w�x� t�

���Wo
k��

E
� �C�	�

If f�f�w� were linear �or quadratic� in w� the equation developed here would be exact� In
the second�moment closure approximation� we expand f�w� about bw� assuming f is twice
continuously di�erentiable with respect to w� and retain terms up to second order only�

f��w� � f��bw� � L��bw�e � �
� tr

h
F��bw�eeT

i
� �C�
�

for ���� �� � � � � m� Here f� denotes the �th element of the vector f � e is the m�vector
function

e � e�x� t� � w�x� t�� bw�x� t� � �C����

L� is the �th row of the tangent linear operator L� the m�m matrix partial di�erential

operator whose ��� j�th element is given by

L�j�bw� � �f��w�
�wj

����
w�bw

� �C����

F� is the Hessian operator� an m�m matrix partial di�erential operator whose �i� j�th

component is h
F��bw�

i
ij

� � �f��w�
�wi�wj

����
w�bw

� �C����

and �tr� denotes the trace of a matrix� Taking conditional expectations in �C�
� givesD
f��w�

���Wo
k��

E
� f��bw� � �

� tr
h
F��bw�V

i
� �C����

where

V � V�x� t� �
D
e�x� t�eT�x� t�

���Wo
k��

E
�C����

is the �conditional� variance function� V is a symmetric m�m matrix function whose diag

onal elements are the conditional variances of the m state variables and whose o��diagonal
elements are conditional cross�covariances between di�erent state variables evaluated at a
given spatial location x�

��
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Abbreviating �C���� by the slightly abusive notationD
f�w�

���Wo
k��

E
� f�bw� � �

� tr
h
F�bw�V

i
� �C����

and taking conditional expectations in �C��� leads to the mean equation

� bw
�t

� f�bw� � �
� tr

h
F�bw�V

i
� � � �C����

The mean equation is similar to the original dynamical equation �C���� which only governs
the evolution of individual realizations� but incorporates a nonlinear bias correction term
�

�
tr �FV�� The truncated expansion of f�w� in �C�
� is exact if f is quadratically nonlinear�

which holds for advective nonlinearity for instance� and in this case �as well as the linear
case� the mean equation is therefore also exact� Solving the mean equation for nonlinear f
requires access to the conditional variance function V�x� t�� but not to the entire conditional
covariance function P�x��x�� t�� which is de�ned by

P�x��x�� t� �
D
e�x�� t�e

T�x�� t�
���Wo

k��

E
� �C����

a function of two sets of spatial variables likeW��x��x��� cf� �C���� From �C���� and �C����
it follows that

V�x� t� � P�x�x� t� � �C��	�

In practice it may be possible to model V�x� t�� or to describe its evolution through Monte
Carlo methods� Approximate evolution equations for V�x� t� can be developed in some
special cases �Cohn �

���

To obtain an approximate covariance evolution equation� �rst use �C���� �C�	� and �C����
to �nd that

�e
�t

� f�w��
D
f�w�

���Wo
k��

E
� � � �C��
�

Substituting �C�
� and �C���� into �C��
� gives

�e
�t

� L�bw�e � � � �C����

where terms quadratic in e have been discarded because in the covariance equation they
become cubic or quartic� along with the truncated expansion �C�
� employed to derive
the mean equation� this completes the second�moment closure approximation� Under an
alternative assumption that the estimation error e�x� t� is Gaussian�distributed� the cubic
terms would still vanish and the quartic terms would be expressed as functions of the
quadratic terms �Jazwinski �
��� xx 
�� and 
��� Miller et al� �

��� As it stands� �C���� is
a linear PDE� coupled nonlinearly to the mean equation �C���� through the dependence of
L upon bw�

According to de�nition �C����� the conditional estimation error covariance function
P�P�x��x�� t� has the symmetry property

PT �x��x�� t� � P�x��x�� t� � �C����

��



An Introduction to Estimation Theory May ����� DAO O�ce Note �����

and its time derivative �P
�t

satis�es

�P
�t

�
D
�e�
�t

eT�

���Wo
k��

E
�
D
�e�
�t

eT�

���Wo
k��

ET
� �C����

where ej�e�xj� t� for j��� �� Substituting �C���� into �C���� yields the covariance evolu�
tion equation

�P
�t

� L�P�
	
L�P

T

T

� � � �C����

where Lj�L�bw�xj � t�� denotes the tangent linear operator acting on the variables xj of
P�x��x�� t� for j��� �� Equation �C���� is a PDE in twice the number of spatial variables
as the mean equation �C���� with which it is coupled�

Equations �C���� and �C���� constitute the forecast step of the second�moment closure
�lter for nonlinear continuum dynamics� In the linear case they are exact� Their solution
at time tk � starting from initial conditions

wa
k���x� � bw�x� tk��� � �C����

Pa
k���x��x�� � P�x��x�� tk��� � �C����

respectively !cf� �C�	�� �C����"� will be denoted by wf

k
�x� and Pf

k
�x��x��� The initial con


ditions for k�� are given by �C��� and �C���� respectively�

Unlike their discrete linear counterparts ���	� and ������� in the nonlinear case �C����
and �C���� are coupled� nonlinearly in fact� the linear equation �C���� depends on L�bw��
while the nonlinear equation �C���� depends on V�x� t��P�x�x� t�� In the extended Kalman
�lter the nonlinear bias correction term �

�
tr �FV� in the conditional mean equation �C����

is omitted� rendering the mean equation independent of the covariance equation� Omission
of this term has been shown both theoretically �Cohn �

�� and numerically �Evensen
�

�� M�enard �

�� to lead to spurious unbounded growth of variance for some nonlinear
problems� Thus it is likely to be important to account for this term� either directly as in
�C���� or through Monte Carlo simulation of the conditional mean dynamics arising from
�C���� in data assimilation schemes of the future� M�enard ��

�� has shown for the Burgers
equation� however� that while the mean equation �C���� is exact in this case since the
Burgers equation is quadratically nonlinear� evaluating the nonlinear bias correction term
by solving the covariance evolution equation leads to poor results because of the second�
moment closure approximation in the covariance equation �C�����

Equations for the conditional mean analysis wa
k�x�� an m�vector function of the spatial

variables x� are now developed under the assumption that w�x� tk� is a Gaussian random
�eld� For linear dynamics this holds automatically if w��x��w�x� t�� is Gaussian� but for
nonlinear dynamics this is an approximating assumption� These analysis equations still
provide the best linear unbiased estimate in the absence of this assumption� as discussed
in x ���� An appropriate change of dependent variables can also be useful� as discussed in
x ����

Under the stated assumptions� the analysis update equation has the form

wa
k�x� � w

f

k
�x� �Kk�x�

	
wo

k �Hkw
f

k
� b�mk 
 � �C����

��
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cf� ������ and ����	�� Here the gainKk is anm�pk matrix function of x� and the innovation

wo
k�Hkw

f

k
�b�mk is a pk�vector as usual� while w

f

k
is a function of x� the operation Hkw

f

k

produces a pk�vector independent of x� as in �C���� Thus the x�dependence of wa
k�x� arises

solely through that of wf

k
�x� and that of the gain Kk�x��

Rather than deriving the optimal gain� here we simply write down the equation for it�
by analogy with ������� omitting the time subscript k now for notational convenience�

K�x�� �
�
H�P

fT
�T h

H�

�
H�P

fT
�T

�R
i��

� �C����

Here R�Rk is the pk�pk measurement error covariance matrix �C���� while H� and H�

denote the action of the observation operator H on the variables x� and x�� respectively�
of the forecast error covariance matrix function Pf�Pf

k�x��x��� Thus H�P
fT is a pk�m

matrix function of x�� and H�

�
H�P

fT
�T

is an ordinary pk�pk matrix� the innovation
covariance matrix to be inverted in �C���� has dimension pk�pk�

Finally� we derive the update equation for the analysis error covariance

Pa
k�x��x�� � �

eak�x��e
aT
k �x��

��Wo
k

�
� �C��	�

an m�m matrix function of x� and x�� where

eak�x� � w�x� tk��wa
k�x� � �C��
�

cf� �C����� �C����� �C����� Substituting �C��� and �C���� into �C��	� yields

Pa�x��x�� �
D�
�I�K�H��e

f
��K���

m�b�m�
��I�K�H��e
f
��K���

m�b�m�
T ���Wo
k

E
�

�C����

where the time index has been omitted� I denotes the m�m identity matrix� Kj�Kk�xj�
for j��� �� and

e
f

j�k � w�xj � tk��w
f

k�xj� � �C����

for j��� �� The cross�terms that appear when the bracketed terms in �C���� are multiplied
vanish because of the assumed independence of the measurement error and the state� so thatD
w�xj � tk���mk �

T
E
��� and because the assumed whiteness of the measurement error and its

independence of the initial state implies that
D
w

f

k
�xj���mk �

T
E
� �� These assumptions also

allow the conditioning on Wo
k in the remaining two terms to be replaced by conditioning on

Wo
k��� so that �C���� becomes

Pa�x��x�� � �I�K�H��
h
�I�K�H��P

fT
iT

�K�RK
T
� � �C����

This is the so�called Joseph form �Bucy and Joseph �
�	� pp� �������� of the analysis error
covariance� which holds for arbitrary gains�

��
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Equation �C���� may be written as

Pa�x��x�� � �I�K�H��P
f �M � �C����

where

M � K�RK
T
� � �I�K�H��

�
K�H�P

fT
�T

�
h
K�R � �I�K�H��

�
H�P

fT
�T i

KT
�

�

�
K�

h
H�

�
H�P

fT
�T

�R
i
� �

H�P
fT
�T�

KT
� � �C����

Upon substituting �C���� into �C���� one �nds that M��� so that

Pa�x��x�� � �I�K�H��P
f � �C����

the analysis error covariance update equation� cf� ������� Equations �C����� �C���� and
�C���� together constitute the continuum analysis update equations�
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